首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有16条查询结果,搜索用时 109 毫秒
1.
• Background and Aims Mixed reproductive strategies may have evolved as a response of plants to cope with environmental variation. One example of a mixed reproductive strategy is dimorphic cleistogamy, where a single plant produces closed, obligately self-pollinated (CL) flowers and open, potentially outcrossed (CH) flowers. Frequently, optimal environmental conditions favour production of more costly CH structures whilst economical and reliable CL structures are produced under less favourable conditions. In this study we explore (1) the effect of light and water on the reproductive phenology and (2) the effect of pollen supplementation on resource allocation to seeds in the cleistogamous weed Ruellia nudiflora.• Methods Split-plot field experiments were carried out to assess the effect of shade (two levels: ambient light vs. a reduction of 50 %) and watering (two levels: non-watered vs. watered) on the onset, end and duration of the production of three reproductive structures: CH flowers, CH fruit and CL fruit. We also looked at the effect of these environmental factors on biomass allocation to seeds (seed weight) from obligately self-pollinated flowers (CL), open-pollinated CH flowers and pollen-supplemented CH flowers.• Key Results CH structures were produced for a briefer period and ended earlier under shaded conditions. These conditions also resulted in an earlier production of CL fruit. Shaded conditions also produced greater biomass allocation to CH seeds receiving extra pollen.• Conclusions Sub-optimal (shaded) conditions resulted in a briefer production period of CH structures whilst these same conditions resulted in an earlier production of CL structures. However, under sub-optimal conditions, plants also allocated more resources to seeds sired from CH flowers receiving large pollen loads. Earlier production of reproductive structures and relatively larger seed might improve subsequent success of CL and pollen-supplemented CH seeds, respectively.  相似文献   
2.
The effect on local ecological knowledge (LEK) of introducing modern crop varieties in their centre of origin has been generally overlooked. LEK of the reproductive ecology of cultivated and wild papaya was assessed in a Mayan community using questionnaires, in-depth interviews, and participant observation. Although the Maya have managed the wild variety of papaya for several centuries, there was more LEK of the recently introduced maradol variety. Most informants were unable to differentiate male and female plants, likely because the most common variety (maradol) in contemporary home gardens is typically hermaphroditic. Informants also mentioned that, in the past, sexual expression was manipulated. We conclude that the introduction of the maradol variety has contributed to the erosion of LEK of the reproductive ecology of papaya.  相似文献   
3.
The biogeography of plant-animal interactions is a novel topic on which many disciplines converge (e.g., reproductive biology, biogeography, and evolutionary biology). Narrative reviews have indicated that tropical columnar cacti and agaves have highly specialized pollination systems, while extratropical species have generalized systems. However, this dichotomy has never been quantitatively tested. We tested this hypothesis using traditional and phylogenetically informed meta-analysis. Three effect sizes were estimated from the literature: diurnal, nocturnal, and hand cross-pollination (an indicator of pollen limitation). Columnar cactus pollination systems ranged from purely bat-pollinated in the tropics to generalized pollination, with diurnal visitors as effective as nocturnal visitors in extratropical regions; even when phylogenetic relatedness among species is taken into account. Metaregressions identified a latitudinal increase in pollen limitation in columnar cacti, but this increase was not significant after correcting for phylogeny. The currently available data for agaves do not support any latitudinal trend. Nectar production of columnar cacti varied with latitude. Although this variation is positively correlated with pollination by diurnal visitors, it is influenced by phylogeny. The degree of specificity in the pollination systems of columnar cacti is heavily influenced by ecological factors and has a predictable geographic pattern.  相似文献   
4.
Few studies have simultaneously addressed the effects of biotic and abiotic factors on pre-dispersal seed predation (PSP). Plant–seed predator interactions may be influenced by natural enemies and pollinators (the latter through changes in fruit or seed traits), and the activity of pre-dispersal seed predators and their natural enemies may both be affected by the abiotic environment. Additionally, in the case of cleistogamous plants with fruit dimorphism, PSP may be biased towards larger and more seeded chasmogamous (CH) fruits [relative to the smaller cleistogamous (CL) fruits], and the effects of biotic and abiotic factors may be contingent upon this fruit dimorphism. We studied PSP in the cleistogamous Ruellia nudiflora using a split-plot experimental design and asked the following: (1) is PSP biased towards CH fruits and is there an effect of pollen load on PSP? (2) Do parasitoids influence PSP and is their effect influenced by pollen load or fruit type? And (3) do light and water availability modify PSP and parasitoid effects? PSP was higher for CH relative to CL fruits, and under low water availability it was lower for pollen-supplemented CH fruits relative to open-pollinated CH fruits. Parasitoids were not influenced by abiotic conditions, but their negative effect on PSP was stronger for pollen-supplemented CH fruits. Overall, we show that fruit dimorphism, abiotic factors and natural enemies affect PSP, and that these effects can be non-additive.  相似文献   
5.
Studies of the effects of patch size and isolation on plant species density have yielded contrasting results. However, much of the available evidence comes from relatively recent anthropogenic forest fragments which have not reached equilibrium between extinction and immigration. This is a critical issue because the theory clearly states that only when equilibrium has been reached can the number of species be accurately predicted by habitat size and isolation. Therefore, species density could be better predicted by patch size and isolation in an ecosystem that has been fragmented for a very long time. We tested whether patch area, isolation and other spatial variables explain variation among forest patches in plant species density in an ecosystem where the forest has been naturally fragmented for long periods of time on a geological scale. Our main predictions were that plant species density will be positively correlated with patch size, and negatively correlated with isolation (distance to the nearest patch, connectivity, and distance to the continuous forest). We surveyed the vascular flora (except lianas and epiphytes) of 19 forest patches using five belt transects (50×4 m each) per patch (area sampled per patch = 0.1 ha). As predicted, plant species density was positively associated (logarithmically) with patch size and negatively associated (linearly) with patch isolation (distance to the nearest patch). Other spatial variables such as patch elevation and perimeter, did not explain among-patch variability in plant species density. The power of patch area and isolation as predictors of plant species density was moderate (together they explain 43% of the variation), however, a larger sample size may improve the explanatory power of these variables. Patch size and isolation may be suitable predictors of long-term plant species density in terrestrial ecosystems that are naturally and anthropogenically fragmented.  相似文献   
6.
7.
Plant diversity can influence predators and omnivores and such effects may in turn influence herbivores and plants. However, evidence for these ecological feedbacks is rare. We evaluated if the effects of tree species (SD) and genotypic diversity (GD) on the abundance of different guilds of insect herbivores associated with big-leaf mahogany (Swietenia macrophylla) were contingent upon the protective effects of ants tending extra-floral nectaries of this species. This study was conducted within a larger experiment consisting of mahogany monocultures and species polycultures of four species and –within each of these two plot types– mahogany was represented by either one or four maternal families. We selected 24 plots spanning these treatment combinations, 10 mahogany plants/plot, and within each plot experimentally reduced ant abundance on half of the selected plants, and surveyed ant and herbivore abundance. There were positive effects of SD on generalist leaf-chewers and sap-feeders, but for the latter group this effect depended on the ant reduction treatment: SD positively influenced sap-feeders under ambient ant abundance but had no effect when ant abundance was reduced; at the same time, ants had negative effects on sap feeders in monoculture but no effect in polyculture. In contrast, SD did not influence specialist stem-borers or leaf-miners and this effect was not contingent upon ant reduction. Finally, GD did not influence any of the herbivore guilds studied, and such effects did not depend on the ant treatment. Overall, we show that tree species diversity influenced interactions between a focal plant species (mahogany) and ants, and that such effects in turn mediated plant diversity effects on some (sap-feeders) but not all the herbivores guilds studied. Our results suggest that the observed patterns are dependent on the combined effects of herbivore identity, diet breadth, and the source of plant diversity.  相似文献   
8.
9.
BACKGROUND AND AIMS: Most studies on cactus recruitment have focused on the role of woody plants as seedling facilitators. Although the spatial association of cacti with objects had been described, the mechanisms underlying this association remain unknown. The aims of this study were to identify which mechanisms facilitate the establishment of a columnar cactus under the shade and protection of objects and to compare these mechanisms with those involved in plant-plant facilitation. METHODS: Three split-split-plot field experiments were conducted to compare the effects of two microhabitats (inside rocky cavities and beneath plant canopies) on seed removal, germination, seedling survivorship and dry weight. Flat, open spaces were used as the control. For each microhabitat, the effect of seed or seedling protection and substrate limitation were explored; aboveground microclimate and some soil properties were also characterized. KEY RESULTS: The permanence of superficial seeds was greater inside rocky cavities than beneath woody plant canopies or on flat, open areas. Germination was similar in cavities and beneath plant canopies, but significantly higher than on flat, open areas. Seedling survivorship was greater beneath plant canopies than inside cavities or on flat, open spaces. CONCLUSIONS: The mechanisms of plant facilitation are different from those of object facilitation. There are seed-seedling conflicts involved in the recruitment of P. leucocephalus: nurse plants favour mainly seedling survivorship by providing a suitable microenvironment, while nurse objects mainly favour seed permanence, by protecting them from predators.  相似文献   
10.
It is widely recognised that the interaction between plants and herbivores cannot be completely understood if the natural enemies of the latter are not included. Most studies looking at the effects of herbivores and their enemies on plant fitness only consider one herbivore species or guild; however, plants in nature usually face the attack of more than one herbivore guild simultaneously and these herbivores may have a non-additive effect on the attraction with bodyguards and plant fitness. In this study, we asked whether folivory affects the activity of parasitoids on seed predators and whether this effect cascades down to plant fitness. We assessed these questions in a tritrophic system: the plant Ruellia nudiflora, its pre-dispersal seed predators and the parasitoids of the latter. Plants were submitted to either 50 % artificial defoliation or no defoliation (control). The number of seeds, fruit production and parasitoid incidence was assessed periodically in both sets of plants. Parasitoids indirectly and positively affected seed number, while defoliation had a direct negative effect on the number of seeds and an indirect negative effect on parasitoid incidence. However, the combined effect of defoliation and seed predation increased the indirect positive effect of the parasitoids on seed production, which overcame the negative effects of defoliation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号