首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   1篇
  2021年   1篇
  2019年   2篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1998年   1篇
  1996年   1篇
  1993年   1篇
  1987年   1篇
  1973年   1篇
排序方式: 共有32条查询结果,搜索用时 296 毫秒
1.
Callus cell lines of potato (Solanum tuberosum L. cv. Zarevo) were obtained from seedlings germinated from gamma-irradiated seeds (200 Gy). Some of these cell lines produce red-violet pigments which were identified as acylated anthocyanins. The major anthocyanin was determined to be peonidin 3-O-[6-O-(4-O-E-p-coumaroyl-rhamnosyl)-glucoside]-5-O-glucoside (peonanin). Single cell-derived protoclones from non-pigmented protoplasts sometimes also gave rise to pigmented cell clusters thus indicating that the changes in the expression of the anthocyanin pathway can also occur after the stage of initial callus induction.  相似文献   
2.
Plasma Physics Reports - The possibility of fabricating winding wires for electromagnetic systems of a tokamak-type reactor using high-temperature superconductors (HTSC) operating at temperatures...  相似文献   
3.
Stable transformation of petunia plastids   总被引:11,自引:0,他引:11  
Plastid transformation results in stably expressed foreign genes, which for most Angiosperms are largely excluded from sperm cells, thereby greatly reducing the risk of foreign gene spread through pollen. Prior to this work, fertile plastid transformants were restricted to tobacco, tomato and Lesquerella . Application of plastid engineering in the important floriculture industry requires the development of stable plastid transformation in a major ornamental plant species such as Petunia hybrida. Here we describe the successful isolation of fertile and stable plastid transformants in a commercial cultivar of P. hybrida (var. Pink Wave). Plastid targeting regions from tobacco were used to integrate aad A and gusA between the acc D and rbc L genes of P. hybrida plastid DNA following particle bombardment of leaves. For three spectinomycin and streptomycin resistant lines, DNA blot analysis confirmed transgene integration into plastid DNA and homoplasmy. Maternal inheritance and homoplasmy resulted in 100 transmission of spectinomycin resistance to progeny after selfing. Plastid transformants expressed the gusA gene uniformly within leaves and to comparable levels in all three lines. Insertion of trait genes in place of gusA coding sequences enables immediate applications of our plastid transformation vector. Establishment of plastid transformation in P. hybrida facilitates a safe and reliable use of this important ornamental plant for research and plant biotechnology.These two authors contributed equally to this work.  相似文献   
4.
Morphological characteristics were studied in cytoplasmic male sterile (CMS) cybrids possessing the tobacco nuclear genome, Hyoscyamus niger plastome and recombinant mitochondria. After backcrosses with tobacco, new flower modifications were found, including: conversions of stamens into branched filamentous structures; alterations in the shape of petals and the corolla limb; and high degrees of reduction in most flower organs. Vegetative alterations (leaf elongation and stem branching) occurred in some cybrids. Results confirmed that a protoplast fusion-based alloplasmic cytoplasm transfer, followed by conventional backcrosses, is a useful tool for generating alternative CMS sources with novel nucleo-cytoplasmic compositions. These alterations in the genetic status were accompanied by modified floral and vegetative phenotypes.  相似文献   
5.
Recombinant genes conferring resistance to antibiotics or herbicides are widely used as selectable markers in plant transformation. Once transgenic material has been selected, the marker gene is dispensable. We report a novel strategy to remove undesirable parts of a transgene after integration into the tobacco genome. This approach is based on the transfer of a vector containing a NPTII gene flanked by two 352 bp attachment P (attP) regions of bacteriophage lambda, and the identification of somatic tissue with deletion events following intrachromosomal recombination between the attP regions. This system was used to delete a 5.9 kb region from a recombinant vector that had been inserted into two different genomic regions. As the attP system does not require the expression of helper proteins to induce deletion events, or a genetic segregation step to remove recombinase genes, it should provide a useful tool to remove undesirable transgene regions, especially in vegetatively propagated species.  相似文献   
6.
Maintenance of cytosine methylation in plants is controlled by three DNA methyltransferases. MET1 maintains CG methylation, and DRM1/2 and CMT3 act redundantly to enforce non-CG methylation. RPS, a repetitive hypermethylated DNA fragment from Petunia hybrida, attracts DNA methylation when transferred into Petunia or other species. In Arabidopsis thaliana, which does not contain any RPS homologues, RPS transgenes are efficiently methylated in all sequence contexts. To test which DNA methylation pathways regulate RPS methylation, we examined maintenance of RPS methylation in various mutant backgrounds. Surprisingly, CG methylation was lost in a drm1/2/cmt3 mutant, and non-CG methylation was almost completely eliminated in a met1 mutant. An unusual cooperative activity of all three DNA methyltransferases is therefore required for maintenance of both CG and non-CG methylation in RPS. Other unusual features of RPS methylation are the independence of its non-CG methylation from the RNA-directed DNA methylation (RdDM) pathway and the exceptional maintenance of methylation at a CC(m)TGG site in some epigenetic mutants. This is indicative of activity of a methylation system in plants that may have evolved from the DCM methylation system that controls CC(m)WGG methylation in bacteria. Our data suggest that strict separation of CG and non-CG methylation pathways does not apply to all target regions, and that caution is required in generalizing methylation data obtained for individual genomic regions.  相似文献   
7.
8.
Maternally inherited chlorophyll deficiency, or albinism, is a standard marker in plant cytoplasmic genetics. Its stability is consistent with mutations in the plastid genome. Nuclear mutations inducing plastid ribosome deficiency (PRD) also lead to maternally inherited chlorophyll deficiency. Here we report that stable chlorophyll deficiency can be efficiently generated in cruciferous plants without mutagenesis by a short exposure to spectinomycin, an inhibitor of plastid protein synthesis. We show that the chlorophyll-deficient phenotype results from a deficiency in plastid ribosomes and plastid translation products. Loss of plastid ribosomes is irreversible. The data suggest that mutations are not essential for generating inheritable PRD. It allows the formulation of a more general model in which stable PRD can be induced by a variety of factors that prevent the formation of functional plastid ribosomes. A non-mutational mechanism for generating inheritable chlorophyll deficiency has implications for the origin and inheritance of green–white variegation in nature.  相似文献   
9.
10.
Telomeres were defined by their ability to cap chromosome ends. Proteins with high affinity for the structure at chromosome ends, binding the G-rich, 3' single-stranded overhang at telomeres include Pot1 in humans and fission yeast, TEBP in Oxytricha nova and Cdc13 in budding yeast. Cdc13 is considered essential for telomere capping because budding yeast that lack Cdc13 rapidly accumulate excessive single-stranded DNA (ssDNA) at telomeres, arrest cell division and die. Cdc13 has a separate, critical role in telomerase recruitment to telomeres. Here, we show that neither Cdc13 nor its partner Stn1 are necessary for telomere capping if nuclease activities that are active at uncapped telomeres are attenuated. Recombination-dependent and -independent mechanisms permit maintenance of chromosomes without Cdc13. Our results indicate that the structure of the eukaryotic telomere cap is remarkably flexible and that changes in the DNA damage response allow alternative strategies for telomere capping to evolve.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号