首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   4篇
  国内免费   5篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   2篇
  2020年   3篇
  2019年   5篇
  2017年   1篇
  2015年   11篇
  2014年   4篇
  2013年   2篇
  2012年   5篇
  2011年   2篇
  2009年   1篇
  2008年   6篇
  2006年   3篇
  2003年   2篇
  2002年   2篇
  1999年   4篇
  1998年   1篇
  1991年   1篇
排序方式: 共有62条查询结果,搜索用时 21 毫秒
1.
Accepted as a malignant tumor worldwide, cervical cancer (CC) has attracted much attention for its high incidence and mortality rates. Previous studies have elucidated the critical regulatory function that long noncoding RNAs (lncRNAs) exert on the tumorigenesis and progression of diverse tumors. Although multiple investigations have depicted that LINC00958 has a great impact on the complex biological process of many cancers, knowledge concerning the regulatory role of LINC00958 in CC remains limited and needs to be further explored. In our study, LINC00958 expression was evidently overexpressed in CC tissues and cells. Besides this, LINC00958 negatively regulated miR-625-5p expression and was verified to bind with miR-625-5p in CC. Subsequently, it was testified by a series of experiments that LINC00958 promotes CC cell proliferation and metastasis by sponging miR-625-5p. Furthermore, the leucine-rich repeat containing the eight family member E (LRRC8E) could bind with miR-625-5p, and its expression was negatively modulated by miR-625-5p, whereas positively regulated by LINC00958 in CC. Final rescue assays verified the effects of LINC0095/LRRC8E interaction and miR-625-5p/LRRC8E interaction on CC cell proliferation and metastasis. Collectively, LINC00958 facilitates CC cell proliferation and metastasis via the miR-625-5p/LRRC8E axis.  相似文献   
2.
The flagellated eukaryote Trypanosoma brucei alternates between the insect vector and the mammalian host and proliferates through an unusual mode of cell division. Cell division requires flagellum motility‐generated forces, but flagellum motility exerts distinct effects between different life cycle forms. Motility is required for the final cell abscission of the procyclic form in the insect vector, but is necessary for the initiation of cell division of the bloodstream form in the mammalian host. The underlying mechanisms remain elusive. Here we carried out functional analyses of a flagellar axonemal inner‐arm dynein complex in the bloodstream form and investigated its mechanistic role in cytokinesis initiation. We showed that the axonemal inner‐arm dynein heavy chain TbIAD5‐1 and TbCentrin3 form a complex, localize to the flagellum, and are required for viability in the bloodstream form. We further demonstrated the interdependence between TbIAD5‐1 and TbCentrin3 for maintenance of protein stability. Finally, we showed that depletion of TbIAD5‐1 and TbCentrin3 arrested cytokinesis initiation and disrupted the localization of multiple cytokinesis initiation regulators. These findings identified the essential role of an axonemal inner‐arm dynein complex in cell division, and provided molecular insights into the flagellum motility‐mediated cytokinesis initiation in the bloodstream form of T. brucei.  相似文献   
3.
Cyclins bind and activate cyclin-dependent kinases that regulate cell cycle progression in eukaryotes. Cell cycle control in Trypanosoma brucei was analyzed in the present study. Genes encoding four PHO80 cyclin homologues and three B-type cyclin homologues but no G1 cyclin homologues were identified in this organism. Through knocking down expression of the seven cyclin genes with the RNA interference technique in the procyclic form of T. brucei, we demonstrated that one PHO80 homologue (CycE1/CYC2) and a B-type cyclin homologue (CycB2) are the essential cyclins regulating G1/S and G2/M transitions, respectively. This lack of overlapping cyclin function differs significantly from that observed in the other eukaryotes. Also, PHO80 cyclin is known for its involvement only in phosphate signaling in yeast with no known function in cell cycle control. Both observations thus suggest the presence of simple and novel cell cycle regulators in trypanosomes. T. brucei cells deficient in CycE1/CYC2 displayed a long slender morphology, whereas those lacking CycB2 assumed a fat stumpy form. These cells apparently still can undergo cytokinesis generating small numbers of anucleated daughter cells, each containing a single kinetoplast known as a zoid. Two different types of zoids were identified, the slender zoid derived from reduced CycE1/CYC2 expression and the stumpy zoid from CycB2 deficiency. This observation indicates an uncoupling between the kinetoplast and the nuclear cycle, resulting in cell division driven by kinetoplast segregation with neither a priori S phase nor mitosis in the trypanosome.  相似文献   
4.
The ubiquitin-proteasome pathway is responsible for selective degradation of short-lived and dysfunctional proteins in eukaryotes. The recently demonstrated presence of a functional 26 S proteasome in Trypanosoma brucei led to the identification and isolation of genes encoding all 11 non-ATPase (Rpn) subunit proteins in the trypanosome 19 S regulatory complex. Using the technique of RNA interference, expression of individual RPN genes was disrupted in the procyclic form of T. brucei, resulting, in each case, in intracellular accumulation of polyubiquitinated protein, cell arrest at the G2/M phase, and eventual cell death. With the exception of Rpn10, depletion of individual Rpn proteins disrupted also trypanosome 19 S complex formation, with the complex virtually depleted in the cell lysate. This functional and structural essentiality of 10 of the 11 Rpn proteins in T. brucei differs significantly from that observed in other organisms. When Rpn10 was deficient in trypanosomes, a 19 S complex without Rpn10 was still formed, whereas cell growth was arrested. This structural dispensability but functional indispensability of Rpn10 may constitute another unique aspect of the proteasomes in T. brucei.  相似文献   
5.
Wang  Ziyin  Wang  Rubin  Fang  Ruiyan 《Cognitive neurodynamics》2015,9(2):129-144
This paper aimed at assessing and comparing the effects of the inhibitory neurons in the neural network on the neural energy distribution, and the network activities in the absence of the inhibitory neurons to understand the nature of neural energy distribution and neural energy coding. Stimulus, synchronous oscillation has significant difference between neural networks with and without inhibitory neurons, and this difference can be quantitatively evaluated by the characteristic energy distribution. In addition, the synchronous oscillation difference of the neural activity can be quantitatively described by change of the energy distribution if the network parameters are gradually adjusted. Compared with traditional method of correlation coefficient analysis, the quantitative indicators based on nervous energy distribution characteristics are more effective in reflecting the dynamic features of the neural network activities. Meanwhile, this neural coding method from a global perspective of neural activity effectively avoids the current defects of neural encoding and decoding theory and enormous difficulties encountered. Our studies have shown that neural energy coding is a new coding theory with high efficiency and great potential.  相似文献   
6.
Pseudomonas aeruginosa poses a major threat to human health and to the mink industry. Thus, development of vaccines that elicit robust humoral and cellular immunity against P. aeruginosa is greatly needed. In this study, a recombinant attenuated Salmonella vaccine (RASV) that expresses the outer membrane proteins fusion OprF190–342‐OprI21–83 (F1I2) from P. aeruginosa was constructed and the potency of this vaccine candidate assessed by measuring F1I2‐specific humoral immune responses upon vaccination through s.c. or oral routes. S.C. administration achieved higher serum IgG titers and IgA titers in the intestine and induced stronger F1I2‐specific IgG and IgA titers in lung homogenate than did oral administration, which resulted in low IgG titers and no local IgA production. High titers of IFN‐γ, IL‐4, and T‐lymphocyte subsets induced a mixed Th1/Th2 response in mice immunized s.c., indicating elicitation of cellular immunity. Importantly, when immunized mice were challenged with P. aeruginosa by the intranasal route 30 days after the initial immunization, s.c. vaccination achieved 77.78% protection, in contrast to 41.18% via oral administration and 66.67% via Escherichia coli‐expressed F1I2 (His‐F1I2) vaccination. These results indicate that s.c. vaccination provides a better protective response against P. aeruginosa infection than do oral administration and the His‐F1I2 vaccine.  相似文献   
7.
【目的】通过菌落测试片提取菌落并计数,在农业、食品业、医疗卫生等领域中是一项常用且重要的工作。目前,菌落自动计数算法大都是以菌落培养皿为主要工作对象,对菌落测试片适用性较差。另外,目前相关技术在常规的粘连物体分割中有着较好的效果,但在菌落分割计数中,由于菌落本身的形态特征,对粘连菌落分割计数的效果尚不够精准。【方法】为解决此类问题,本文提出一种基于目标颜色基及梯度方向匹配的菌落分割计数算法。首先利用图像中菌落的颜色特征作为基,将图像转换到基空间内,以增强菌落与背景之间的差异,其次利用菌落图像的梯度幅值特征对梯度方向进行滤波,然后通过梯度方向进行匹配,进而将粘连的菌落分割,最后利用非极大值抑制的方法筛选出菌落并计数。【结果】经试验,本研究算法的计数精度可达98.00%,能够满足实际需求。【结论】在针对菌落的目标分割计数中,本研究算法不仅计数精度高,而且具有较好的鲁棒性,在对不同厂家的菌落总数测试片菌落分割计数中均有优异效果;然而在对大面积目标的检测分割中算法的准确率会有所下降,因此,该算法更适合于菌落等小目标的检测分割。  相似文献   
8.
By using differential display PCR (DD-PCR) technique, two salt-inducible and one salt-repressed cDNA fragments were isolated from rice. The three cDNA fragments were characterized respectively as partial sequence of rice S-adenosylmethionine decarboxylase (SAMDC) gene, a new member of translation elongation factor 1A gene (namedREF1 A), and a novel gene whose function is unknown (namedSRG1). The full-length cDNA of SAMDC gene (namedSAMDC1) was further isolated by RT-PCR approach and the deduced polypeptide was found to be homologous to SAMDC proteins of other plants, yeast and buman. Northern hybridization revealed that expression of SAMDCl and REFlA was induced, while SRGl was dramatically repressed, by salinity stress. Southern blot analysis demonstrated that SAMDCl and SRGl were present as a single copy gene in rice genome, whereas riceREF1 A gene was organized as a gene family. TheREF1 A,SAMDC1, andSRG1 genes were located on chromosome 3,4, and 6 respectively by RFLP mapping approach using ZYQ8/JX17 DH population and RFLP linkage maps. Project supported by the National “863” High-Technology Program.  相似文献   
9.
Aurora B kinase is an essential regulator of chromosome segregation with the action well characterized in eukaryotes. It is also implicated in cytokinesis, but the detailed mechanism remains less clear, partly due to the difficulty in separating the latter from the former function in a growing cell. A chemical genetic approach with an inhibitor of the enzyme added to a synchronized cell population at different stages of the cell cycle would probably solve this problem. In the deeply branched parasitic protozoan Trypanosoma brucei, an Aurora B homolog, TbAUK1, was found to control both chromosome segregation and cytokinetic initiation by evidence from RNAi and dominant negative mutation. To clearly separate these two functions, VX-680, an inhibitor of TbAUK1, was added to a synchronized T. brucei procyclic cell population at different cell cycle stages. The unique trans-localization pattern of the chromosomal passenger complex (CPC), consisting of TbAUK1 and two novel proteins TbCPC1 and TbCPC2, was monitored during mitosis and cytokinesis by following the migration of the proteins tagged with enhanced yellow fluorescence protein in live cells with time-lapse video microscopy. Inhibition of TbAUK1 function in S-phase, prophase or metaphase invariably arrests the cells in the metaphase, suggesting an action of TbAUK1 in promoting metaphase-anaphase transition. TbAUK1 inhibition in anaphase does not affect mitotic exit, but prevents trans-localization of the CPC from the spindle midzone to the anterior tip of the new flagellum attachment zone for cytokinetic initiation. The CPC in the midzone is dispersed back to the two segregated nuclei, while cytokinesis is inhibited. In and beyond telophase, TbAUK1 inhibition has no effect on the progression of cytokinesis or the subsequent G1, S and G2 phases until a new metaphase is attained. There are thus two clearly distinct points of TbAUK1 action in T. brucei: the metaphase-anaphase transition and cytokinetic initiation. This is the first time to our knowledge that the dual functions of an Aurora B homolog is dissected and separated into two clearly distinct time frames in a cell cycle.  相似文献   
10.
Chromosome segregation is a tightly regulated process through which duplicated genetic materials are equally partitioned into daughter cells. During the past decades, tremendous efforts have been made to understand the molecular mechanism of chromosome segregation using animals and yeasts as model systems. Recently, new insights into chromosome segregation have gradually emerged using trypanosome, an early branching parasitic protozoan, as a model organism. To uncover the unique aspects of chromosome segregation in trypanosome, which potentially could serve as new drug targets for anti-trypanosome chemotherapy, it is necessary to perform a comparative analysis of the chromosome segregation machinery between trypanosome and its human host. Here, we briefly review the current knowledge about chromosome segregation in human and Trypanosoma brucei, with a focus on the regulation of cohesin and securin degradation triggered by the activation of the anaphase promoting complex/cyclosome (APC/C). We also include yeasts in our comparative analysis since some of the original discoveries were made using budding and fission yeasts as the model organisms and, therefore, these could provide hints about the evolution of the machinery. We highlight both common and unique features in these model systems and also provide perspectives for future research in trypanosome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号