首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
  2022年   1篇
  2013年   2篇
  2012年   1篇
  2005年   2篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1982年   1篇
排序方式: 共有13条查询结果,搜索用时 538 毫秒
1.
2.
Symbioses between the root nodule-forming, nitrogen-fixing actinomycete Frankia and its angiospermous host plants are important in the nitrogen economies of numerous terrestrial ecosystems. Molecular characterization of Frankia strains using polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) analyses of the 16S rRNA-ITS gene and of the nifD-nifK spacer was conducted directly on root nodules collected worldwide from Casuarina and Allocasuarina trees. In their native habitats in Australia, host species contained seven distinctive sets of Frankia in seven different molecular phylogenetic groups. Where Casuarina and Allocasuarina trees are newly planted outside Australia, they do not normally nodulate unless Frankia is introduced with the host seedling. Nodules from Casuarina trees introduced outside Australia over the last two centuries were found to contain Frankia from only one of the seven phylogenetic groups associated with the host genus Casuarina in Australia. The phylogenetic group of Frankia found in Casuarina and Allocasuarina trees introduced outside Australia is the only group that has yielded isolates in pure culture, suggesting a greater ability to survive independently of a host. Furthermore, the Frankia species in this group are able to nodulate a wider range of host species than those in the other six groups. In baiting studies, Casuarina spp. are compatible with more Frankia microsymbiont groups than Allocasuarina host spp. adapted to drier soil conditions, and C. equisetifolia has broader microsymbiont compatibility than other Casuarina spp. Some Frankia associated with the nodular rhizosphere and rhizoplan, but not with the nodular tissue, of Australian hosts were able to nodulate cosmopolitan Myrica plants that have broad microsymbiont compatibility and, hence, are a potential host of Casuarinaceae-infective Frankia outside the hosts' native range. The results are consistent with the idea that Frankia symbiotic promiscuity and ease of isolation on organic substrates, suggesting saprophytic potential, are associated with increased microsymbiont ability to disperse and adapt to diverse new environments, and that both genetics and environment determine a host's nodular microsymbiont.  相似文献   
3.
The identity of Frankia strains from nodules of Myrica gale, Alnus incana subsp. rugosa, and Shepherdia canadensis was determined for a natural stand on a lake shore sand dune in Wisconsin, where the three actinorhizal plant species were growing in close proximity, and from two additional stands with M. gale as the sole actinorhizal component. Unisolated strains were compared by their 16S ribosomal DNA (rDNA) restriction patterns using a direct PCR amplification protocol on nodules. Phylogenetic relationships among nodular Frankia strains were analyzed by comparing complete 16S rDNA sequences of study and reference strains. Where the three actinorhizal species occurred together, each host species was nodulated by a different phylogenetic group of Frankia strains. M. gale strains from all three sites belonged to an Alnus-Casuarina group, closely related to Frankia alni representative strains, and were low in diversity for a host genus considered promiscuous with respect to Frankia microsymbiont genotype. Frankia strains from A. incana nodules were also within the Alnus-Casuarina cluster, distinct from Frankia strains of M. gale nodules at the mixed actinorhizal site but not from Frankia strains from two M. gale nodules at a second site in Wisconsin. Frankia strains from nodules of S. canadensis belonged to a divergent subset of a cluster of Elaeagnaceae-infective strains and exhibited a high degree of diversity. The three closely related local Frankia populations in Myrica nodules could be distinguished from one another using our approach. In addition to geographic separation and host selectivity for Frankia microsymbionts, edaphic factors such as soil moisture and organic matter content, which varied among locales, may account for differences in Frankia populations found in Myrica nodules.  相似文献   
4.
The bacterial stress-response peptide TisB in Escherichia coli has been suggested to dissipate the transmembrane potential, such that the depletion of ATP levels induces the formation of dormant persister cells which can eventually form biofilms. We studied the structure and membrane interactions of TisB to find out whether it forms pores or other proton-selective channels. Circular dichroism revealed an amphiphilic α-helical structure when reconstituted in lipid vesicles, and oriented circular dichroism showed that the helix assumes a transmembrane alignment. The addition of TisB to dye-loaded vesicles caused leakage only at very high peptide concentration, notably with a Hill coefficient of 2, which suggests that dimers must be involved. Coarse-grained molecular dynamics simulations showed that membrane binding of monomeric TisB is rapid and spontaneous, and transmembrane insertion is energetically feasible. When TisB oligomers are assembled as transmembrane pores, these channels collapse during the simulations, but transmembrane dimers are found to be stable. Given the pattern of charges on the amphiphilic TisB helix, we postulate that antiparallel dimers could be assembled via a ladder of salt bridges. This electrostatic charge-zipper could enable protons to pass along a wire of trapped water molecules across the hydrophobic membrane.  相似文献   
5.
Soils from seven sites on the island of Jamaica were assayed for the symbiotic diazotrophs Frankia and Rhizobium using serial dilutions. Most probable number and least squares regression methods were used to estimate each soil's capacity to nodulate native Myrica cerifera, exotic Leucaena leucocephala and exotic Casuarina cunninghamiana. The sample sites included a montane forest, a slash-and-burn agricultural site, reclaimed bauxite mining areas, abandoned sugar cane fields, and a garden plot. None of the host plants used in the bioassay were present on the sites sampled except for scattered L. leucocephala on one site. Frankia capable of nodulating M. cerifera, which is native to Jamaican highlands, occurred at all sites sampled. No C. cunninghamiana-infective Frankia was detected in soils sampled. Only soils from one site on the tropical coastal plain harbored rhizobia able to nodulate L. leucocephala (37 nodulation units cm?3 of soil). A subset of nodulated M. cerifera and L. leucocephala reduced acetylene to ethylene indicating nitrogenase activity. The slash-and-burn agricultural site, which was situated at an elevation of 200 m and possessed both high natural fertility and high soil moisture-supplying capacity, had significantly greater Myrica infectious capacity (1 000 nodulation units cm?3 of soil) than the other sites (7?207 nodulation units cm?3 of soil). A planned, paired comparison revealed that a recently cultivated sugar cane field and a recently reclaimed bauxite mining site together had significantly less Myrica-infective Frankia (4 nodulation units cm?3 of soil) than a corresponding pair of sites consisting of a sugar cane field abandoned for 25 years and a bauxite mining site reclaimed 20 years before sampling (118 nodulation units cm?3 of soil). Results indicate that Myrica-infective Frankia is widespread in Jamaica, that the number of Myrica-infective Frankia units vary from site to site in accordance with soil type and soil history, that Jamaican sites sampled lack soil Frankia populations capable of nodulating a casuarina host, that rhizobial symbionts capable of nodulating L. leucocephala may be geographically restricted to lowlands in Jamaica, and that the occurrence of Frankia in these soils is independent of host plant presence.  相似文献   
6.
In the Western Canary Islands, Myrica faya and Myrica rivas-martinezii (Myricaceae) are phylogenetically close, endemic, actinorhizal species presumed to be remnants either of the European or the African Tertiary floras. Unisolated Frankia strains from field-collected nodules on Tenerife, Gomera, and La Palma Islands were compared by their rrs gene and 16S–23S intergenic spacer (IGS) restriction patterns. To compare the genetic diversity of Frankia strains from within and outside the host’s native range, nodules of M. faya field plants were collected both in Canary Islands and in Hawaii, where this species is an exotic invasive. Myrica rivas-martinezii, endemic to the Canary Islands, was sparsely nodulated in the field. Frankia strains harbored in field-collected nodules of M. faya and M. rivas-martinezii belonged to the Elaeagnaceae strains’ genetic cluster and exhibited a high degree of diversity. Frankia genotypes were specific to each host species. In the Canary archipelago, we found no relationship between site of collection and Frankia genotype for M. faya. The only exceptions were strains from site 2 in Tenerife, a location with a geological history different from the other sites sampled. Hawaiian and Canarian M. faya strains had no genotypes in common, raising questions concerning the origin of M. faya-infective Frankia in Hawaii. Nodular strains of M. rivas-martinezii from nursery plants were genetically characterized and shown to be divergent from the strains of field-collected nodules and belong to the Alnus-Casuarina strains cluster. This suggests Myrica may have the potential to nodulate with a broader range of Frankia genotypes under artificial conditions than has been detected in field-collected nodules.  相似文献   
7.
Eosinophils play a central role in the pathogenesis of parasitic infections, atopic diseases, and bullous dermatoses. To understand the regulative function of phosphatidylinositol 3-kinases in cell responses of eosinophils, phospholipid metabolism and production of reactive oxygen metabolites were followed after stimulation with C5a. Measurements of phosphatidylinositol lipids and analysis of deacylated products of separated lipid extracts showed fast and transient formation of phosphatidylinositol 3,4,5-trisphosphate (PIP(3)). Cell studies in the presence of the tyrosine kinase blocker genistein indicated that C5a-stimulated PIP(3) formation occurred independently of tyrosine kinase activity. To analyze the function of PI4,5P(2)-3-kinase in eosinophils, the influence of wortmannin and LY294002 on production of reactive oxygen metabolites was studied. Both compounds inhibited with similar concentration dependency C5a-induced formation of PIP(3) and production of reactive oxygen metabolites. In summary, these data showed for the first time the involvement of PI4,5P(2)-3-kinase in the production of reactive oxygen metabolites in eosinophils.  相似文献   
8.
Summary Crude membrane fractions of Dictyostelium discoideum show the capacity to synthesize (1-3H)dolicholphosphate from (1-3H)dolichol. Formation of dolicholphosphate increased continuously over the first 15 min. The reaction rate was nearly linear with respect to the dolichol content up to 150 µM. The phosphate donor for the reaction is CTP. The optimum concentration of CTP is about 0,75 mM. The reaction is dependent on divalent metal ions, magnesium being more effective than calcium or manganese.The activity of the polyisoprenol kinase depends on the course of the early development. Maximum enzyme activities are present 4–6 h after the induction of the differentiation.  相似文献   
9.
The identity of Frankia strains from nodules of Myrica gale, Alnus incana subsp. rugosa, and Shepherdia canadensis was determined for a natural stand on a lake shore sand dune in Wisconsin, where the three actinorhizal plant species were growing in close proximity, and from two additional stands with M. gale as the sole actinorhizal component. Unisolated strains were compared by their 16S ribosomal DNA (rDNA) restriction patterns using a direct PCR amplification protocol on nodules. Phylogenetic relationships among nodular Frankia strains were analyzed by comparing complete 16S rDNA sequences of study and reference strains. Where the three actinorhizal species occurred together, each host species was nodulated by a different phylogenetic group of Frankia strains. M. gale strains from all three sites belonged to an Alnus-Casuarina group, closely related to Frankia alni representative strains, and were low in diversity for a host genus considered promiscuous with respect to Frankia microsymbiont genotype. Frankia strains from A. incana nodules were also within the Alnus-Casuarina cluster, distinct from Frankia strains of M. gale nodules at the mixed actinorhizal site but not from Frankia strains from two M. gale nodules at a second site in Wisconsin. Frankia strains from nodules of S. canadensis belonged to a divergent subset of a cluster of Elaeagnaceae-infective strains and exhibited a high degree of diversity. The three closely related local Frankia populations in Myrica nodules could be distinguished from one another using our approach. In addition to geographic separation and host selectivity for Frankia microsymbionts, edaphic factors such as soil moisture and organic matter content, which varied among locales, may account for differences in Frankia populations found in Myrica nodules.  相似文献   
10.
Zimpfer  J. F.  Kaelke  C. M.  Smyth  C. A.  Hahn  D.  Dawson  J. O. 《Plant and Soil》2003,254(1):1-10
The effects of soil biota, Frankia inoculation and tissue amendment on nodulation capacity of a soil was investigated in a factorial study using bulked soil from beneath a Casuarina cunninghamiana tree and bioassays with C. cunninghamiana seedlings as capture plants. Nodulation capacities were determined from soils incubated in sterile jars at 21 °C for 1, 7, and 28 days, after receiving all combinations of the following treatments: ± steam pasteurization, ± inoculation with Frankia isolate CjI82001, and ± amendment with different concentrations of Casuarina cladode extracts. Soil respiration within sealed containers was determined periodically during the incubation period as a measure of overall microbial activity. Soil respiration, and thus overall microbial activity, was positively correlated with increasing concentrations of Casuarina cladode extracts. The nodulation capacity of soils inoculated with Frankia strain Cj82001 decreased over time, while those of unpasteurized soils without inoculation either increased or remained unaffected. The mean nodulation capacity of unpasteurized soil inoculated with Frankia CjI82001 was two to three times greater than the sum of values for unpasteurized and inoculated pasteurized soils. Our results suggest a positive synergism between soil biota as a whole and Frankia inoculum with respect to host infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号