首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   1篇
  2017年   1篇
  2016年   2篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2002年   3篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1994年   1篇
  1990年   2篇
  1985年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
1.
2.
Intrinsic protein fluorescence may interfere with the visualization of proteins after SDS-polyacrylamide electrophoresis. In an attempt to analyze tear glycoproteins in gels, we ran tear samples and stained the proteins with a glycoprotein-specific fluorescent dye. The fluorescence detected was not limited to glycoproteins. There was strong intrinsic fluorescence of proteins normally found in tears after soaking the gels in 40% methanol plus 1-10% acetic acid and, to a lesser extent, in methanol or acetic acid alone. Nanograms of proteins gave visible native fluorescence and interfere with extrinsic fluorescent dye detection. Poly-L-lysine, which does not contain intrinsically fluorescent amino acids, did not fluoresce.  相似文献   
3.
Two soluble post-proline cleaving peptidase activities, PPCP1 and PPCP2, were demonstrated in Tenebrio molitor larval midgut with the substrate benzyloxycarbonyl-L-alanyl-L-proline p-nitroanilide. Both activities were serine peptidases. PPCP1 was active in acidic buffers, with maximum activity at pH 5.3, and was located mainly in the more acidic anterior midgut lumen. The dynamics of PPCP1 activity and the total activity of soluble digestive peptidases in the course of food digestion were similar, suggesting that the enzyme participates in protein digestion. PPCP2 is a nondigestive soluble tissue enzyme evenly distributed along the midgut. An increase in the activity of PPCP2 was observed in buffers of pH 5.6-8.6 and was maximal at pH 7.4. The sensitivity of PPCP2 to inhibitors and the effect of pH are similar to prolyl oligopeptidases with a cysteine residue near the substrate binding site.  相似文献   
4.
Compartmentalization of proteinases, amylases, and pH in the midgut of Nauphoeta cinerea Oliv. (Blattoptera:Blaberidae) was studied in order to understand the organization of protein and starch digestion. Total proteolytic activity measured with azocasein was maximal at pH 11.5 both in anterior (AM) and posterior (PM) halves of the midgut, but the bulk of activity (67%) was found in PM. Total AM and PM preparations were fractionated on a Sephadex G-50 column and further analysed by means of activity electrophoresis and specific inhibitors and activators. The major activity in PM was classified as an unusual SH-dependent proteinase with M(r) 24,000 and pH optimum with synthetic substrate BApNA at 10.0. The enzyme was 43-fold activated in the presence of 1 mM DTT, insensitive to synthetic inhibitors of serine (PMSF, TLCK, TPCK) and cysteine (IAA, E-64) proteinases, strongly inhibited by STI, and displayed four active bands on zymograms. In PM, activities of trypsin-like, chymotrypsin-like, subtilisin-like, and cysteine proteinases were observed. Aspartic and metalloproteinases were not detected. In AM, activity of unusual SH-dependent proteinase also dominated and activity of chymotrypsin-like proteinase was observed, but their levels were much lower than in PM. Distribution of amylase activity, exhibiting an optimum at pH 6.0, was quite the opposite. The major part of it (67%) was located in AM. Treatment of amylase preparation with proteinases from AM and PM reduced amylase activity twofold. pH of the midgut contents was 6.0-7.2 in AM, 6.4-7.6 in the first and 8.8-9.3 in the second halves of PM. Thus, pH in AM is in good agreement with the optimal pH of amylase, located in this compartment, but the activity of proteinases, including the ability to degrade amylase, in such an environment is low. Active proteolysis takes place in the second half of PM, where pH of the gut is close to the optimal pH of proteinases.  相似文献   
5.
A study of bacterial surface oligosaccharides were investigated among different strains of Neisseria gonorrhoeae to correlate structural features essential for binding to the MAb 2C7. This epitope is widely expressed and conserved in gonococcal isolates, characteristics essential to an effective candidate vaccine antigen. Sample lipooligosaccharides (LOS), was prepared by a modification of the hot phenol-water method from which de-O-acetylated LOS and oligosaccharide (OS) components were analyzed by ES-MS-CID-MS and ES-MSnin a triple quadrupole and an ion trap mass spectrometer, respectively. Previously documented natural heterogeneity was apparent from both LOS and OS preparations which was admixed with fragments induced by hydrazine and mild acid treatment. Natural heterogeneity was limited to phosphorylation and antenni extensions to the alpha-chain. Mild acid hydrolysis to release OS also hydrolyzed the beta(1-->6) glycosidic linkage of lipid A. OS structures were determined by collisional and resonance excitation combined with MS and multistep MSn which provided sequence information from both neutral loss, and nonreducing terminal fragments. A comparison of OS structures, with earlier knowledge of MAb binding, enzyme treatment, and partial acid hydrolysis indicates a generic overlapping domain for 2C7 binding. Reoccurring structural features include a Hepalpha(1-->3)Hepbeta(1-->5)KDO trisaccharide core branched on the nonreducing terminus (Hep-2) with an alpha(1-->2) linked GlcNAc (gamma-chain), and an alpha-linked lactose (beta-chain) residue. From the central heptose (Hep-1), a beta(1-->4) linked lactose (alpha-chain), moiety is required although extensions to this residue appear unnecessary.   相似文献   
6.
The structure of the mouthparts was studied in 24 species representing 10 families and 4 suborders of cockroaches. The details of the labrum, mandibles, maxillae, labium, and hypopharynx, characteristic of different suborders of Blattodea and some families of Blaberoidea, were revealed.  相似文献   
7.
Many structural, signaling, and adhesion molecules contain tandemly repeated amino acid motifs. The alpha-actinin/spectrin/dystrophin superfamily of F-actin-crosslinking proteins contains an array of triple alpha-helical motifs (spectrin repeats). We present here the complete sequence of the novel beta-spectrin isoform beta(Heavy)- spectrin (beta H). The sequence of beta H supports the origin of alpha- and beta-spectrins from a common ancestor, and we present a novel model for the origin of the spectrins from a homodimeric actin-crosslinking precursor. The pattern of similarity between the spectrin repeat units indicates that they have evolved by a series of nested, nonuniform duplications. Furthermore, the spectrins and dystrophins clearly have common ancestry, yet the repeat unit is of a different length in each family. Together, these observations suggest a dynamic period of increase in repeat number accompanied by homogenization within each array by concerted evolution. However, today, there is greater similarity of homologous repeats between species than there is across repeats within species, suggesting that concerted evolution ceased some time before the arthropod/vertebrate split. We propose a two-phase model for the evolution of the spectrin repeat arrays in which an initial phase of concerted evolution is subsequently retarded as each new protein becomes constrained to a specific length and the repeats diverge at the DNA level. This evolutionary model has general applicability to the origins of the many other proteins that have tandemly repeated motifs.   相似文献   
8.
9.
Tenebrio molitor larval digestive proteinases were purified and characterized by gel filtration chromatography combined with activity electrophoresis. Cysteine proteinases, consisting of at least six distinct activities, were found in three chromatographic peaks in anterior and posterior midgut chromatographies. The major activity in the anterior midgut, peak cys II, consisted of cysteine proteinases with Mm of 23 kDa. The predominant peak in the posterior, cys I, was represented by 38 kDa proteinases. The activities of all cysteine proteinases were maximal in buffers from pH 5.0 to 7.0, with 80% stability at pH values from 4.0 to 7.0. In the conditions of the last third of the midgut, the activity and stability of cysteine proteinases was sharply decreased. Trypsin-like activity included a minor peak of "heavy" trypsins with Mm 59 kDa, located mainly in the anterior midgut. An in vitro study of the initial stages of digestion of the main dietary protein, oat 12S globulin, by anterior midgut proteinases revealed that hydrolysis occurred through the formation of intermediate high-Mm products, similar to those formed during oat seed germination. Cysteine proteinases from the cys III peak and heavy trypsins were capable of only limited proteolysis of the protein, whereas incubation with cys II proteinases resulted in substantial hydrolysis of the globulin.  相似文献   
10.
Proteinase inhibitors were studied in the midgut of Nauphoeta cinerea Oliv. (Blattoptera: Blaberidae) in experimental conditions, excluding their nutritional origin. One trypsin inhibitor (TI) with M(r) 8,000 and two subtilisin inhibitors (SI1 and SI2) with M(r) 13,000 and 8,000 were detected after fractionation of total protein preparation on Sephadex G-50. Ninety-four percent of both types of inhibitors was located in anterior midgut (AM). TI was 120-fold purified by FPLC-chromatography on Mono Q. Its isoelectric point was 4.3. TI lost a large part of activity in acidic and especially in alkaline medium. TI, SI1, and SI2 effectively inhibited activities of endogenous proteinases from posterior midgut (PM) of the cockroach. A search for inhibitor of endogenous unusual SH-dependent proteinase from AM revealed in AM a new inhibitor with M(r) 18,000. It was also inactivated in alkaline medium and was effective against proteinases from PM along with unusual SH-dependent proteinase from AM. A mechanism of regulation of activity of midgut proteinases is proposed based on pH-stability of inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号