首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2021年   1篇
  2019年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有4条查询结果,搜索用时 31 毫秒
1
1.
Journal of Physiology and Biochemistry - Atherosclerosis is one common chronic inflammatory disease in which angiogenesis is involved. Here we established an in vitro cell model of angiogenesis...  相似文献   
2.
Anti-apoptosis plays an important role in tumour formation and development. Survivin is a member of the inhibitor of apoptosis (IAP) family, which is a target for anti-cancer drug exploitation was replaced as development. We investigated the role of the homo dominant-negative mutant Survivin-T34A in suppressing human lung adenocarcinomas (A549). The anti-tumour activity of HSurvivinT34A plasmid was evaluated in the A549 cell line and nude mice bearing A549 subcutaneous tumours. Low-dose systemic administration was continuously used. The HSurvivinT34A plasmid (5 µg/one) complexed with a cationic liposome (DOTAP/Chol) significantly inhibited tumour growth in our model. We observed microvessel density degradation by CD31 immunohistochemistry and apoptotic cell increase by TUNEL assay, PI staining and flow cytometric analysis in the treated group. The present findings suggest that the HSurvivinT34A plasmid complexed with a cationic liposome may provide an effective approach to inhibit the growth of human lung adenocarcinomas in vitro and in vivo.  相似文献   
3.
Journal of Physiology and Biochemistry - An Editorial Expression of Concern to this paper has been published: https://doi.org/10.1007/s13105-021-00804-1  相似文献   
4.
Tumor neovascularization is a highly complex process including multiple steps. Understanding this process, especially the initial stage, has been limited by the difficulties of real-time visualizing the neovascularization embedded in tumor tissues in living animal models. In the present study, we have established a xenograft model in zebrafish by implanting mammalian tumor cells into the perivitelline space of 48 hours old Tg(Flk1:EGFP) transgenic zebrafish embryos. With this model, we dynamically visualized the process of tumor neovascularization, with unprecedented high-resolution, including new sprouts from the host vessels and the origination from VEGFR2+ individual endothelial cells. Moreover, we quantified their contributions during the formation of vascular network in tumor. Real-time observations revealed that angiogenic sprouts in tumors preferred to connect each other to form endothelial loops, and more and more endothelial loops accumulated into the irregular and chaotic vascular network. The over-expression of VEGF165 in tumor cells significantly affected the vascularization in xenografts, not only the number and size of neo-vessels but the abnormalities of tumor vascular architecture. The specific inhibitor of VEGFR2, SU5416, significantly inhibited the vascularization and the growth of melanoma xenografts, but had little affects to normal vessels in zebrafish. Thus, this zebrafish/tumor xenograft model not only provides a unique window to investigate the earliest events of tumoral neoangiogenesis, but is sensitive to be used as an experimental platform to rapidly and visually evaluate functions of angiogenic-related genes. Finally, it also offers an efficient and cost-effective means for the rapid evaluation of anti-angiogenic chemicals.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号