首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
  2021年   2篇
  2019年   1篇
  2014年   3篇
  2012年   4篇
  2009年   5篇
  2008年   2篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1996年   1篇
  1994年   1篇
  1988年   1篇
排序方式: 共有31条查询结果,搜索用时 136 毫秒
1.
Force development in smooth muscle, as in skeletal muscle, is believed to reflect recruitment of force-generating myosin cross-bridges. However, little is known about the events underlying cross-bridge recruitment as the muscle cell approaches peak isometric force and then enters a period of tension maintenance. In the present studies on single smooth muscle cells isolated from the toad (Bufo marinus) stomach muscularis, active muscle stiffness, calculated from the force response to small sinusoidal length changes (0.5% cell length, 250 Hz), was utilized to estimate the relative number of attached cross-bridges. By comparing stiffness during initial force development to stiffness during force redevelopment immediately after a quick release imposed at peak force, we propose that the instantaneous active stiffness of the cell reflects both a linearly elastic cross-bridge element having 1.5 times the compliance of the cross-bridge in frog skeletal muscle and a series elastic component having an exponential length-force relationship. At the onset of force development, the ratio of stiffness to force was 2.5 times greater than at peak isometric force. These data suggest that, upon activation, cross-bridges attach in at least two states (i.e., low-force-producing and high-force-producing) and redistribute to a steady state distribution at peak isometric force. The possibility that the cross-bridge cycling rate was modulated with time was also investigated by analyzing the time course of tension recovery to small, rapid step length changes (0.5% cell length in 2.5 ms) imposed during initial force development, at peak force, and after 15 s of tension maintenance. The rate of tension recovery slowed continuously throughout force development following activation and slowed further as force was maintained. Our results suggest that the kinetics of force production in smooth muscle may involve a redistribution of cross-bridge populations between two attached states and that the average cycling rate of these cross-bridges becomes slower with time during contraction.  相似文献   
2.
NRADD (neurotrophin receptor alike death domain protein) is a novel protein with transmembrane and cytoplasmic regions highly homologous to death receptors, particularly p75(NTR). However, the short N-terminal domain is unique. Expression of NRADD induced apoptosis in a number of cell lines. The apoptotic mechanism involved the activation of caspase-8 and execution of apoptosis without requiring mitochondrial components. The activation of this death receptor-like mechanism required the N-terminal domain, which is N-glycosylated and needed for subcellular targeting. Deletion of the N-terminal domain produced a dominant-negative form of NRADD that protected neurons and Schwann cells from a variety of endoplasmic reticulum (ER) stressors. NRADD may therefore be a necessary component for generating an ER-induced proapoptotic signal.  相似文献   
3.
Neutrophil accumulation in the lung plays a pivotal role in the pathogenesis of acute lung injury during sepsis. Directed movement of neutrophils is mediated by a group of chemoattractants, especially CXC chemokines. Local lung production of CXC chemokines is intensified during experimental sepsis induced by cecal ligation and puncture (CLP), as reflected by rising levels of MIP-2 and cytokine-induced neutrophil chemoattractant-1 in bronchoalveolar lavage fluids. Alveolar macrophages are primed and blood neutrophils are down-regulated for production of MIP-2 and cytokine-induced neutrophil chemoattractant production in response to LPS and C5a. Under these conditions of stimulation, activation of MAPKs (p38, p42/p44) occurs in sham neutrophils but not in CLP neutrophils, while under the same conditions phosphorylation of p38 and p42/p44 occurs in both sham and CLP alveolar macrophages. These data indicate that, under septic conditions, there is impaired signaling in neutrophils and enhanced signaling in alveolar macrophages, resulting in CXC chemokine production, and C5a appears to play a pivotal role in this process. As a result, CXC chemokines increase in lung, setting the stage for neutrophil accumulation in lung during sepsis.  相似文献   
4.
5.
Pathogen-pattern-recognition by Toll-like receptors (TLRs) and pathogen clearance after immune complex formation via engagement with Fc receptors (FcRs) represent central mechanisms that trigger the immune and inflammatory responses. In the present study, a linkage between TLR4 and FcγR was evaluated in vitro and in vivo. Most strikingly, in vitro activation of phagocytes by IgG immune complexes (IgGIC) resulted in an association of TLR4 with FcγRIII (CD16) based on co-immunoprecipitation analyses. Neutrophils and macrophages from TLR4 mutant (mut) mice were unresponsive to either lipopolysaccharide (LPS) or IgGIC in vitro, as determined by cytokine production. This phenomenon was accompanied by the inability to phosphorylate tyrosine residues within immunoreceptor tyrosine-based activation motifs (ITAMs) of the FcRγ-subunit. To transfer these findings in vivo, two different models of acute lung injury (ALI) induced by intratracheal administration of either LPS or IgGIC were employed. As expected, LPS-induced ALI was abolished in TLR4 mut and TLR4−/− mice. Unexpectedly, TLR4 mut and TLR4−/− mice were also resistant to development of ALI following IgGIC deposition in the lungs. In conclusion, our findings suggest that TLR4 and FcγRIII pathways are structurally and functionally connected at the receptor level and that TLR4 is indispensable for FcγRIII signaling via FcRγ-subunit activation.  相似文献   
6.

Background

Aluminum (Al) toxicity is an important limitation to food security in tropical and subtropical regions. High Al saturation on acid soils limits root development, reducing water and nutrient uptake. In addition to naturally occurring acid soils, agricultural practices may decrease soil pH, leading to yield losses due to Al toxicity. Elucidating the genetic and molecular mechanisms underlying maize Al tolerance is expected to accelerate the development of Al-tolerant cultivars.

Results

Five genomic regions were significantly associated with Al tolerance, using 54,455 SNP markers in a recombinant inbred line population derived from Cateto Al237. Candidate genes co-localized with Al tolerance QTLs were further investigated. Near-isogenic lines (NILs) developed for ZmMATE2 were as Al-sensitive as the recurrent line, indicating that this candidate gene was not responsible for the Al tolerance QTL on chromosome 5, qALT5. However, ZmNrat1, a maize homolog to OsNrat1, which encodes an Al3+ specific transporter previously implicated in rice Al tolerance, was mapped at ~40 Mbp from qALT5. We demonstrate for the first time that ZmNrat1 is preferentially expressed in maize root tips and is up-regulated by Al, similarly to OsNrat1 in rice, suggesting a role of this gene in maize Al tolerance. The strongest-effect QTL was mapped on chromosome 6 (qALT6), within a 0.5 Mbp region where three copies of the Al tolerance gene, ZmMATE1, were found in tandem configuration. qALT6 was shown to increase Al tolerance in maize; the qALT6-NILs carrying three copies of ZmMATE1 exhibited a two-fold increase in Al tolerance, and higher expression of ZmMATE1 compared to the Al sensitive recurrent parent. Interestingly, a new source of Al tolerance via ZmMATE1 was identified in a Brazilian elite line that showed high expression of ZmMATE1 but carries a single copy of ZmMATE1.

Conclusions

High ZmMATE1 expression, controlled either by three copies of the target gene or by an unknown molecular mechanism, is responsible for Al tolerance mediated by qALT6. As Al tolerant alleles at qALT6 are rare in maize, marker-assisted introgression of this QTL is an important strategy to improve maize adaptation to acid soils worldwide.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-153) contains supplementary material, which is available to authorized users.  相似文献   
7.
This study aimed to investigate the association among genetic variants of the complement pathway CFB R32Q (rs641153), C3 R102G (rs2230199), and CFH (rs1410996) with age-related macular degeneration (AMD) in a sample of the Brazilian population. In a case-control study, 484 AMD patients were classified according to the clinical age-related maculopathy grading system (CARMS) and compared to 479 unrelated controls. The genetic variants rs1410996 of complement H (CFH), rs641153 of complement factor B (CFB), and rs2230199 of complement 3 (C3) were evaluated through polymerase chain reaction (PCR) and direct sequencing. The associations between single nucleotide polymorphisms (SNPs) and AMD, adjusted by age, were assessed by using logistic regression models. A statistically significant association was observed between AMD risk and rs2230199 variant with an OR of 2.01 (P  = 0.0002) for CG individuals compared to CC individuals. Regarding the comparison of advanced AMD versus the control group, the OR was 2.12 (P = 0.0036) for GG versus AA genotypes for rs1410996 variant. Similarly, the OR for rs2230199 polymorphism was 2.3034 (P  = 5.47e-05) when comparing CG individuals to CC carriers. In contrast, the rs641153 variant showed a significant protective effect against advanced AMD for GA versus GG genotype (OR = 0.4406; P  = 0.0019). When comparing wet AMD versus controls, a significant association was detected for rs1410996 variant (OR = 2.16; P  = 0.0039) comparing carriers of the homozygous GG versus AA genotype, as well as in the comparisons of GG (OR = 3.0713; P  = 0.0046) and CG genotypes (OR = 2.2249; P  = 0.0002) versus CC genotype for rs2230199 variant, respectively. The rs641153 variant granted a significant protective effect against wet AMD for GA versus GG genotypes (OR = 0.4601; P  = 0.0044). Our study confirmed the risk association between rs2230199 and rs1410996 variants and AMD, and the protective role against AMD for rs641153 variant.  相似文献   
8.
There is accumulating evidence that the complement activation product, C5a, can orchestrate cellular immune functions. IL-27(p28/EBI3) is an emerging key player essential for regulating inflammatory responses and T cells. In this article, we report that C5a robustly suppressed IL-27(p28) gene expression and release in peritoneal macrophages. These cells from C57BL/6J mice abundantly produced IL-27(p28) after engagement of either the TLR3 (polyinosinic-polycytidylic acid) or TLR4 (LPS) receptor. Genetic deficiency of either TLR4 or LBP completely incapacitated the ability of macrophages to secrete IL-27(p28) in response to LPS. IL-27(p28)-producing macrophages also expressed the C5aR receptor, thus displaying an IL-27(p28)(+)F4/80(+)C5aR(+) phenotype. C5a suppressed IL-27(p28) in LPS-stimulated macrophages via interactions with the C5aR receptor rather than the C5L2 receptor. After endotoxemia, C5aR(-/-) mice displayed higher plasma levels of IL-27(p28) compared with C57BL/6J mice. C5a did not affect the release of IL-27(p28) or the frequency of IL-27(p28)(+)F4/80(+) macrophages after engagement of TLR3. Mechanistically, LPS activated both the NF-κB and the PI3K/Akt pathways, whereas C5a activated only the PI3K/Akt pathway. Engagement of PI3K/Akt was inhibitory for IL-27(p28) production, because PI3K/Akt pharmacologic blockade resulted in increased amounts of IL-27(p28) and reversed the suppressive effects of C5a. Blockade of PI3K/Akt in endotoxemic C57BL/6J mice resulted in higher generation of IL-27(p28). In contrast, the PI3K/Akt pathway was not involved in TLR3-mediated release of IL-27(p28). These data provide new evidence about how complement activation may selectively interfere with production of T cell regulatory cytokines by APCs in the varying contexts of either bacterial (TLR4 pathway) or viral (TLR3 pathway) infection.  相似文献   
9.
There is growing evidence that the complement activation product C5a positively or negatively regulates inflammatory functions. The studies presented here report that C5a exerts anti-inflammatory effects by altering production of the cytokines IL-17A and IL-23 during endotoxic shock in young adult male C57BL/6J mice and has similar effects on macrophages from the same mice. IL-17A and IL-23 both appeared in plasma during endotoxemia, and their neutralization improved survival. The relevant sources of IL-17A during endotoxemia were not CD4(+) cells, γδ T cells, or NK cells but CD11b(+)F4/80(+) macrophages. The addition in vitro of C5a to lipopolysaccharide-activated peritoneal macrophages dose dependently antagonized the production of IL-17A (IC(50), 50-100 nM C5a) and IL-23 (IC(50), 10 nM C5a). This suppression required the receptor C5aR, but was independent of the second C5a receptor, C5L2. Genetic absence of C5aR was associated with much higher levels of IL-17A and IL-23 during endotoxic shock. Mechanistically, C5a mediated its effects on the IL-17A/IL-23 axis in a 2-step process. C5a caused activation of the PI3K-Akt and MEK1/2-ERK1/2 pathways, resulting in induction of IL-10, which powerfully inhibited production of IL-17A and IL-23. These data identify previously unknown mechanisms by which the anaphylatoxin C5a limits acute inflammation and antagonizes the IL-17A/IL-23 axis.  相似文献   
10.

Background  

Hyperplasia of usual type (HUT) is a common proliferative lesion associated with a slight elevated risk for subsequent development of breast cancer. Cell cycle-related proteins would be helpful to determine the putative role of these markers in the process of mammary carcinogenesis. The aim of this study was to analyze the expression of cell cycle related proteins in HUT of breast specimens of patients with and without breast cancer, and compare this expression with areas of invasive carcinomas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号