首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   110篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2010年   5篇
  2009年   2篇
  2008年   1篇
  2007年   5篇
  2006年   2篇
  2005年   6篇
  2004年   9篇
  2003年   5篇
  2002年   7篇
  2001年   5篇
  2000年   7篇
  1999年   17篇
  1998年   5篇
  1997年   5篇
  1996年   9篇
  1995年   2篇
  1994年   5篇
  1993年   10篇
  1992年   3篇
  1991年   6篇
  1990年   10篇
  1989年   9篇
  1988年   12篇
  1987年   14篇
  1986年   5篇
  1985年   15篇
  1984年   12篇
  1983年   12篇
  1982年   7篇
  1981年   10篇
  1980年   6篇
  1979年   8篇
  1978年   7篇
  1977年   12篇
  1976年   2篇
  1975年   6篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1969年   2篇
  1966年   1篇
排序方式: 共有289条查询结果,搜索用时 15 毫秒
1.
Detailed physiological studies were done to compare the influence of environmental pH and fermentation end product formation on metabolism, growth, and proton motive force in Sarcina ventriculi. The kinetics of end product formation during glucose fermentation in unbuffered batch cultures shifted from hydrogen-acetate production to ethanol production as the medium pH dropped from 7.0 to 3.3. At a constant pH of 3.0, the production of acetate ceased when the accumulation of acetate in the medium reached 40 mmol/liter. At a constant pH of 7.0, acetate production continued throughout the entire growth time course. The in vivo hydrogenase activity was much higher in cells grown at pH 7.0 than at pH 3.0. The magnitude of the proton motive force increased in relation to a decrease of the medium pH from 7.5 to 3.0. When the organism was grown at pH 3.0, the cytoplasmic pH was 4.25 and the organism was unable to exclude acetic acid or butyric acid from the cytoplasm. Addition of acetic acid, but not hydrogen or ethanol, inhibited growth and resulted in proton motive force dissipation and the accumulation of acetic acid in the cytoplasm. The results indicate that S. ventriculi is an acidophile that can continue to produce ethanol at low cytoplasmic pH values. Both the ability to shift to ethanol production and the ability to continue to ferment glucose while cytoplasmic pH values are low adapt S. ventriculi for growth at low pH.  相似文献   
2.
The omega-conotoxins from the venom of fish-hunting cone snails are probably the most useful of presently available ligands for neuronal Ca channels from vertebrates. Two of these peptide toxins, omega-conotoxins MVIIA and MVIIB from the venom of Conus magus, were purified. The amino acid sequences show significant differences from omega-conotoxins from Conus geographus. Total synthesis of omega-conotoxin MVIIA was achieved, and biologically active radiolabeled toxin was produced by iodination. Although omega-conotoxins from C. geographus (GVIA) and C. magus (MVIIA) appear to compete for the same sites in mammalian brain, in amphibian brain the high-affinity binding of omega-conotoxin MVIIA has narrower specificity. In this system, it is demonstrated that a combination of two omega-conotoxins can be used for biochemically defining receptor subtypes and suggested that these correspond to subtypes of neuronal Ca2+ channels.  相似文献   
3.
The presence of a phospholipase A2 (PLA2) activity in rabbit neutrophil membrane preparation that is able to release [1-14C]oleic acid from labelled Escherichia coli has been demonstrated. The activity is critically dependent on the free calcium concentration and marginally stimulated by GTP gamma S. More than 80% of maximal activity is reached at 10 microM-Ca2+. The chemotactic factor, fMet-Leu-Phe, does not stimulate the PLA2 activity in this membrane preparation. Pretreatment of the membrane preparation, under various experimental conditions, or intact cells, before isolation of the membrane with phorbol 12-myristate 13-acetate (PMA), does not affect PLA2 activity. Addition of the catalytic unit of cyclic AMP-dependent kinase to membrane preparation has no effect on PLA2 activity. Pretreatment of the intact neutrophil with dibutyryl-cAMP before isolation of the membrane produces a small but consistent increase in PLA2 activity. The activity of PLA2 in membrane isolated from cells treated with the protein kinase inhibitor 1-(5-isoquinolinesulphonyl)-2-methyl piperazine dihydrochloride (H-7) is significantly decreased. Furthermore, although the addition of PMA to intact rabbit neutrophils has no effect on the release of [3H]arachidonic acid from prelabelled cells, it potentiates significantly the release produced by the calcium ionophore A23187. This potentiation is not due to an inhibition of the acyltransferase activity. H-7 inhibits the basal release of arachidonic acid but does not inhibit the potentiation by PMA. These results suggest several points. (1) fMet-Leu-Phe does not stimulate PLA2 directly, and its ability to release arachidonic acid in intact neutrophils is mediated through its action on phospholipase C. (2) The potentiating effect of PMA on A23187-induced arachidonic acid release is most likely due to PMA affecting either the environment of PLA2 and/or altering the organization of membrane phospholipids in such a way as to increase their susceptibility to hydrolysis. (3) The intracellular level of cyclic AMP probably does not directly affect the activity of PLA2.  相似文献   
4.
A detailed study of the glucose fermentation pathway and the modulation of catabolic oxidoreductase activities by energy sources (i.e., glucose versus lactate or fumarate) in Propionispira arboris was performed. 14C radiotracer data show the CO2 produced from pyruvate oxidation comes exclusively from the C-3 and C-4 positions of glucose. Significant specific activities of glyceraldehyde-3-phosphate dehydrogenase and fructose-1,6-bisphosphate aldolase were detected, which substantiates the utilization of the Embden-Meyerhoff-Parnas path for glucose metabolism. The methylmalonyl coenzyme A pathway for pyruvate reduction to propionate was established by detection of significant activities (greater than 16 nmol/min per mg of protein) of methylmalonyl coenzyme A transcarboxylase, malate dehydrogenase, and fumarate reductase in cell-free extracts and by 13C nuclear magnetic resonance spectroscopic demonstration of randomization of label from [2-13C]pyruvate into positions 2 and 3 of propionate. The specific activity of pyruvate-ferredoxin oxidoreductase, malate dehydrogenase, fumarate reductase, and transcarboxylase varied significantly in cells grown on different energy sources. D-Lactate dehydrogenase (non-NADH linked) was present in cells of P. arboris grown on lactate but not in cells grown on glucose or fumarate. These results indicate that growth substrates regulate synthesis of enzymes specific for the methylmalonyl coenzyme A path and initial substrate transformation.  相似文献   
5.
We describe the properties of a family of 22-amino acid peptides, the mu-conotoxins, which are useful probes for investigating voltage-dependent sodium channels of excitable tissues. The mu-conotoxins are present in the venom of the piscivorous marine snail, Conus geographus L. We have purified seven homologs of the mu-conotoxin set and determined their amino acid sequences, as follows, where Hyp = trans-4-hydroxyproline. GIIIA R.D.C.C.T.Hyp.Hyp.K.K.C.K.D.R.Q.C.K.Hyp.Q.R.C.C.A-NH2 [Pro6]GIIIA R.D.C.C. T.P.Hyp.K.K.C.K.D.R.Q.C.K.Hyp.Q.R.C.C.A-NH2 [Pro7]GIIIA R.D.C.C.T.Hyp.P.K.K.C.K.D.R.Q.C.R.Hyp.Q.R.C.C.A-NH2 GIIIB R.D.C.C.T.Hyp.Hyp.R.K.C.K.D.R.R.C.K.Hyp.M.K.C.C.A-NH2 [Pro6]GIIIB R.D.C.C.T.P.Hyp.R.K.C.K.D.R.R. C.K.Hyp.M.K.C.C.A-NH2 [Pro7]GIIIB R.D.C.C.T.Hyp.P.R.K.C.K.D.R.R.C.K.Hyp.M.K.C.C.A-NH2 GIIIC R.D.C.C.T.Hyp.Hyp.K.K.C.K.D.R.R.C.K.Hyp.L.K.C.C.A-NH2. Using the major peptide (GIIIA) in electrophysiological studies on nerve-muscle preparations and in single channel studies using planar lipid bilayers, we have established that the toxin blocks muscle sodium channels, while having no discernible effect on nerve or brain sodium channels. In bilayers the blocking kinetics of GIIIA were derived by statistical analysis of discrete transitions between blocked and unblocked states of batrachotoxin-activated sodium channels from rat muscle. The kinetics conform to a single-site, reversible binding equilibrium with a voltage-dependent binding constant. The measured value of the equilibrium KD for GIIIA is 100 nM at OmV, decreasing e-fold/34 mV of hyperpolarization. This voltage dependence of blocking is similar to that of tetrodotoxin and saxitoxin as measured by the same technique. The tissue specificity and kinetic characteristics suggest that the mu-conotoxins may serve as useful ligands to distinguish sodium channel subtypes in different tissues.  相似文献   
6.
Various enzymes involved in the initial metabolic pathway for ammonia assimilation by Methanobacterium ivanovii were examined. M. ivanovii showed significant activity of glutamine synthetase (GS). Glutamate synthase (GOGAT) and alanine dehydrogenase (ADH) were present, wheras, glutamate dehydrogenase (GDH) was not detected. When M. ivanovii was grown with different levels of NH + 4 (i.e. 2, 20 or 200 mM), GS, GOGAT and ADH activities varied in response to NH + 4 concentration. ADH was not detected at 2 mM level, but its activity increased with increased levels of NH + 4 in the medium. Both GS and GOGAT activities increased with decreasing concentrations of NH + 4 and were maximum when ammonia was limiting, suggesting that at low NH + 4 levels, GS and GOGAT are responsible for ammonia assimilation and at higher NH + 4 levels, ADH might play a role. Metabolic mutants of M. ivanovii that were auxotrophic for glutamine were obtained and analyzed for GS activity. Results indicate two categories of mutants: i) GS-deficient auxotrophic mutants and ii) GS-impaired auxotrophic mutants.Abbreviations GS Glutamine synthetase - GOGAT glutamate synthase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase  相似文献   
7.
A new type of dissimilatory bisulfite reductase, desulfofuscidin, was isolated from the nonsporeforming thermophilic sulfate-reducing microorganism Thermodesulfobacterium commune. The molecular weight of the enzyme was estimated at 167,000 by sedimentation equilibrium, and the protein was pure by both disc electrophoresis and ultracentrifugation. The bisulfite reductase was a tetramer and had two types of subunits with an α2β2 structure and an individual molecular weight of 47,000. The enzyme exhibited absorption maxima at 576, 389, and 279 nm, with a weak band at 693 nm. Upon the addition of dithionite, the absorption maxima at 576 and 693 nm were weakened, and a new band appeared at 605 nm. The protein reacted with CO in the presence of dithionite to give a complex with absorption peaks at 593, 548, and 395 nm. The extinction coefficients of the purified enzyme at 576, 389, and 279 nm were 89,000, 310,000, and 663,000 M−1 cm−1, respectively. Siroheme was detected as the prosthetic group. The protein contains 20 to 21 nonheme iron atoms and 16 to 17 acid-labile sulfur groups per molecule. The data suggest the presence of four sirohemes and probably four (4Fe-4S) centers per molecule by comparison with desulfoviridin, the dissimilatory sulfite reductase from Desulfovibrio species. The protein contains 36 cysteine residues and is high in acidic and aromatic amino acids. The N-terminal amino acids of the α and β subunits were threonine and serine, respectively. With reduced methyl viologen as electron donor, the major product of sulfite reduction was trithionate, and the pH optimum for activity was 6.0. The enzyme was stable to 70°C and denatured rapidly above this temperature. The dependence of T. commune bisulfite reductase activity on temperature was linear between 35 and 65°C, and the Q10 values observed were above 3. The presence of this new type of dissimilatory bisulfite reductase in T. commune is discussed in terms of taxonomic significance.  相似文献   
8.
Selective enrichment culture techniques were employed to obtain mixed cultures of methanogenic rods and sarcina from surface flooding waters and deep subsurface (~1650 m) oil-bearing sedimentary rocks and formation waters sampled from an old oil field in the U.S.S.R. previously reported to display active biological methanogenesis. The methanogens were selectively isolated as colonies on agar petri dishes that were incubated in a novel container. The general cellular and growth features of three Methanobacterium isolates were determined. These strains grew optimally at 37 to 45°C in anaerobic pressure tube cultures with a doubling time of 16 to 18 h on H2-CO2 and proliferated as autotrophs. Acetate addition significantly enhanced the final cell yield. Growth of these strains was completely inhibited by either 0.6 g of sodium sulfide per liter or 31.0 of sodium chloride per liter, but growth was not inhibited by either 0.3 g of sodium sulfide per liter or 1.0 g of sodium sulfate per liter. One novel isolate, Methanobacterium sp. strain ivanov, was grown on H2-CO2, and the stable-carbon isotopic fractionations that occurred during synthesis of methane, cell carbon, and lipids were determined. The results of this study were used to examine the anomalous relationship between the isotopic and chemical compositions of natural gas occurring in the deep subsurface environment of the oil field.  相似文献   
9.
Summary A new thermophilic Bacillus strain 3183 (ATCC 49341) was isolated from hot-spring sediments. The organism grew on pullulan as a carbon source and showed optimum pH and temperature at pH 5.5 and 62° C, respectively, for growth. The strain reduced nitrate to nitrite both aerobically and anaerobically. It produced extracellular thermostable pullulanase and saccharidase activities which degraded pullulan and starch into maltotriose, maltose, and glucose. Medium growth conditions for pullulanase production were optimized. The optimum pH and temperature for pullulanase activity were at pH 6.0 and 75° C, respectively. The enzyme was stable at pH 5.5-7.0 and temperature up to 70° C in the absence of substrate. The K m for pullulan at pH 6.0 and 75° C was 0.4 mg/ml. The pullulanase activity was stimulated and stabilized by Ca2+. It was inhibited by ethylenediaminetetraacetate (EDTA), beta and gamma-cyclodextrins but not by alpha-cyclodextrin and reagents that inhibit essential enzyme SH-groups. Offprint requests to: B. C. Saha  相似文献   
10.
The effect of formate and hydrogen on isomerization and syntrophic degradation of butyrate and isobutyrate was investigated using a defined methanogenic culture, consisting of syntrophic isobutyrate-butyrate degrader strain IB, Methanobacterium formicicum strain T1N, and Methanosarcina mazeii strain T18. Formate and hydrogen were used to perturb syntrophic butyrate and isobutyrate degradation by the culture. The reversible isomerization between isobutyrate and butyrate was inhibited by the addition of either formate or hydrogen, indicating that the isomerization was coupled with syntrophic butyrate degradation for the culture studied. Energetic analysis indicates that the direction of isomerization between isobutyrate and butyrate is controlled by the ratio between the two acids, and the most thermodynamically favorable condition for the degradation of butyrate or isobutyrate in conjunction with the isomerization is at almost equal concentrations of isobutyrate and butyrate. The degradation of isobutyrate and butyrate was completely inhibited in the presence of a high hydrogen partial pressure (>2000 Pa) or a measurable level of formate (10 muM or higher). Significant formate (more than 1 mM) was detected during the perturbation with hydrogen (17 to 40 kPa). Resumption of butyrate and isobutyrate degradation was related to the removal of formate. Energetic analysis supported that formate was another electron carrier, besides hydrogen, during syntrophic isobutyrate-butyrate degradation by this culture. (c) 1996 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号