首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2016年   1篇
  2015年   1篇
  2012年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1997年   2篇
排序方式: 共有11条查询结果,搜索用时 62 毫秒
1.
O-Linked β-N-acetylglucosamine (O-GlcNAc) is a post-translational modification of proteins in multicellular organisms. O-GlcNAc modification is catalyzed by the O-GlcNAc transferase (OGT), which transfers N-acetylglucosamine (GlcNAc) from the nucleotide sugar donor UDP-GlcNAc to serine or threonine residues of protein substrates. Recently, we reported a novel metabolic labeling method to introduce the diazirine photocross-linking functional group onto O-GlcNAc residues in mammalian cells. In this method, cells are engineered to produce diazirine-modified UDP-GlcNAc (UDP-GlcNDAz), and the diazirine-modified GlcNAc analog (GlcNDAz) is transferred to substrate proteins by endogenous OGT, producing O-GlcNDAz. O-GlcNDAz-modified proteins can be covalently cross-linked to their binding partners, providing information about O-GlcNAc-dependent interactions. The utility of the method was demonstrated by cross-linking highly O-GlcNAc-modified nucleoporins to proteins involved in nuclear transport. For practical application of this method to a broader range of O-GlcNAc-modified proteins, efficient O-GlcNDAz production is critical. Here we examined the ability of OGT to transfer GlcNDAz and found that the wild-type enzyme (wtOGT) prefers the natural substrate, UDP-GlcNAc, over the unnatural UDP-GlcNDAz. This competition limits O-GlcNDAz production in cells and the extent of O-GlcNDAz-dependent cross-linking. Here we identified an OGT mutant, OGT(C917A), that efficiently transfers GlcNDAz and, surprisingly, has altered substrate specificity, preferring to transfer GlcNDAz rather than GlcNAc to protein substrates. We confirmed the reversed substrate preference by determining the Michaelis-Menten parameters describing the activity of wtOGT and OGT(C917A) with both UDP-GlcNAc and UDP-GlcNDAz. Use of OGT(C917A) enhances O-GlcNDAz production, yielding improved cross-linking of O-GlcNDAz-modified molecules both in vitro and in cells.  相似文献   
2.
The vasodilatory effect of Globularia alypum L. (GA) extract was evaluated in rat mesenteric arterial bed pre-contracted by continuous infusion of phenylephrine (2-4 ng/mL). Bolus injections of GA elicited dose-response vasodilation, which was abolished after endothelium removal. Addition of a nitric oxide synthase inhibitor, N(G)-nitro-l-arginine methyl ester (100 μmol/L), alone or in the presence of a cyclooxygenase inhibitor, indomethacin (10 μmol/L), did not significantly affect the vasodilation of the mesenteric arterial bed in response to GA extract. These results suggest that GA-induced vasodilation is endothelium dependent but nitric oxide and prostacyclin independent. In the presence of high K(+) (60 mmol/L), the GA vasodilatory effect was completely abolished, suggesting that the vasodilation effect is mediated by hyperpolarization of the vascular cells. Also, pre-treatment with atropine (a muscarinic receptors antagonist) antagonized the GA-induced vasodilation, suggesting that the vasodilatory effect is mainly mediated by the endothelium-derived hyperpolarizing factor through activation of endothelial muscarinic receptors.  相似文献   
3.
The high percentage of false positives generated by differential display (as high as 85%) has previously limited the potential of the method. This report describes an efficient methodology that enables false positives to be discarded prior to cloning, via reverse Northern analysis. This first step of the screening also allows the detection of putative low abundance differential clones. Following cloning, a second reverse Northern combined with partial DNA sequencing and RT-PCR detection allows isolation of all differential cDNAs including very low abundance clones. Use of the sequential screening procedure described here led to the isolation of novel tomato genes responding to the plant hormone ethylene while minimising labor and materials input.  相似文献   
4.
5.
6.
In addition to target efficacy, drug safety is a major requirement during the drug discovery process and is influenced by target specificity. Therefore, it is imperative that every new drug candidate be profiled against various liability panels that include protein kinases. Here, an effective methodology to streamline kinase inhibitor profiling is described. An accessible standardized profiling system for 112 protein kinases covering all branches of the kinome was developed. This approach consists of creating different sets of kinases and their corresponding substrates in multi-tube strips. The kinase stocks are pre-standardized for optimal kinase activity and used for inhibitor profiling using a bioluminescent ADP detection assay. We show that these strips can routinely generate inhibitor selectivity profiles for small or broad kinase family panels. Lipid kinases were also assembled in strip format and profiled together with protein kinases. We identified two specific PI3K inhibitors that have off-target effects on CK2 that were not reported before and would have been missed if compounds were not profiled against lipid and protein kinases simultaneously. To validate the accuracy of the data generated by this method, we confirmed that the inhibition potencies observed are consistent with published values produced by more complex technologies such as radioactivity assays.  相似文献   
7.
The AGCVIIIa kinases of Arabidopsis are members of the eukaryotic PKA, PKG, and PKC group of regulatory kinases. One AGCVIIIa kinase, PINOID (PID), plays a fundamental role in the asymmetrical localization of membrane proteins during polar auxin transport. The remaining 16 AGCVIIIa genes have not been associated with single mutant phenotypes, suggesting that the corresponding kinases function redundantly. Consistent with this idea, we find that the genes encoding the Arabidopsis AGCVIIIa kinases have spatially distinct, but overlapping, expression domains. Here we show that the majority of Arabidopsis AGCVIIIa kinases are substrates for the 3-phosphoinositide-dependent kinase 1 (PDK1) and that trans-phosphorylation by PDK1 correlates with activation of substrate AGCVIIIa kinases. Mutational analysis of two conserved regulatory domains was used to demonstrate that sequences located outside of the C-terminal PDK1 interaction (PIF) domain and the activation loop are required for functional interactions between PDK1 and its substrates. A subset of GFP-tagged AGCVIIIa kinases expressed in Saccharomyces cerevisiae and tobacco BY-2 cells were preferentially localized to the cytoplasm (AGC1-7), nucleus (WAG1 and KIPK), and the cell periphery (PID). We present evidence that PID insertion domain sequences are sufficient to direct the observed peripheral localization. We find that PID specifically but non-selectively binds to phosphoinositides and phosphatidic acid, suggesting that PID might directly interact with the plasma membrane through protein-lipid interactions. The initial characterization of the AGCVIIIa kinases presented here provides a framework for elucidating the physiological roles of these kinases in planta.  相似文献   
8.
9.
The c-type cytochromes are defined by the occurrence of heme covalently linked to the polypeptide via thioether bonds between heme and the cysteine sulfhydryls in the CXXCH motif of apocytochrome. Maintenance of apocytochrome sulfhydryls in a reduced state is a prerequisite for covalent ligation of heme to the CXXCH motif. In bacteria, a thiol disulfide transporter and a thioredoxin are two components in a thio-reduction pathway involved in c-type cytochrome assembly. We have identified in photosynthetic eukaryotes nucleus-encoded homologs of a prokaryotic thiol disulfide transporter, CcdA, which all display an N-terminal extension with respect to their bacterial counterparts. The extension of Arabidopsis CCDA functions as a targeting sequence, suggesting a plastid site of action for CCDA in eukaryotes. Using PhoA and LacZ as topological reporters, we established that Arabidopsis CCDA is a polytopic protein with within-membrane strictly conserved cysteine residues. Insertional mutants in the Arabidopsis CCDA gene were identified, and loss-of-function alleles were shown to impair photosynthesis because of a defect in cytochrome b(6)f accumulation, which we attribute to a block in the maturation of holocytochrome f, whose heme binding domain resides in the thylakoid lumen. We postulate that plastid cytochrome c maturation requires CCDA, thioredoxin HCF164, and other molecules in a membrane-associated trans-thylakoid thiol-reducing pathway.  相似文献   
10.
We report the isolation by differential display of a novel tomato ethylene-responsive cDNA, designated ER5. RT-PCR analysis of ER5 expression revealed an early (15 min) and transient induction by ethylene in tomato fruit, leaves and roots. ER5 mRNA accumulated during 2 h of ethylene treatment and thereafter underwent a dramatic decline leading to undetectable expression after 5 h of treatment. The full-length cDNA clone of 748 bp was obtained and DNA sequence analysis showed strong homologies to members of the atypical hydrophobic group of the LEA protein family. The predicted amino acid sequence shows 67%, 64%, 64%, and 61% sequence identity with the tomato Lemmi9, soybean D95-4, cotton Lea14-A, and resurrection plant pcC27-45 gene products, respectively. As with the other members of this group, ER5 encodes a predominantly hydrophobic protein. Prolonged drought stress stimulates ER5 expression in leaves and roots, while ABA induction of this ethylene-responsive clone is confined to the leaves. The use of 1-MCP, an inhibitor of ethylene action, indicates that the drought induction of ER5 is ethylene-mediated in tomato roots. Finally, wounding stimulates ER5 mRNA accumulation in leaves and roots. Among the Lea gene family this novel clone is the first to display an ethylene-regulated expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号