首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   1篇
  2022年   1篇
  2021年   1篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   5篇
  2011年   6篇
  2010年   6篇
  2009年   3篇
  2008年   7篇
  2007年   2篇
  2006年   1篇
  2005年   9篇
  2004年   13篇
  2003年   1篇
  2002年   5篇
  2001年   6篇
  2000年   3篇
  1999年   2篇
  1993年   1篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   8篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有103条查询结果,搜索用时 343 毫秒
1.
The core structure of the lipopolysaccharide (LPS) isolated from a rough strain of the phytopathogenic bacterium Pseudomonas syringae pv. phaseolicola, GSPB 711, was investigated by sugar and methylation analyses, Fourier transform ion-cyclotron resonance ESI MS, and one- and two-dimensional 1H-, 13C- and 31P-NMR spectroscopy. Strong alkaline deacylation of the LPS resulted in two core-lipid A backbone undecasaccharide pentakisphosphates in the ratio approximately 2.5 : 1, which corresponded to outer core glycoforms 1 and 2 terminated with either L-rhamnose or 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo), respectively. Mild acid degradation of the LPS gave the major glycoform 1 core octasaccharide and a minor truncated glycoform 2 core heptasaccharide, which resulted from the cleavage of the terminal Kdo residues. The inner core of P. syringae is distinguished by a high degree of phosphorylation of L-glycero-D-manno-heptose residues with phosphate, diphosphate and ethanolamine diphosphate groups. The glycoform 1 core is structurally similar but not identical to one of the core glycoforms of the human pathogenic bacterium Pseudomonas aeruginosa. The outer core composition and structure may be useful as a chemotaxonomic marker for the P. syringae group of bacteria, whereas a more conserved inner core structure appears to be representative for the whole genus Pseudomonas.  相似文献   
2.
Pseudomonas syringae pv. maculicola dissociants producing colonies of different morphotype were found to possess similar biochemical and serological properties but different virulence to the host plant. The heterogeneous extracellular and intracellular lipopolysaccharide-protein complexes of the dissociants differed in their chemical composition and biological activity towards test plants.  相似文献   
3.
The composition, structure, and certain biological properties of lipopolysaccharides (LPS) isolated from six strains of bacteria Pseudomonas syringae pv. atrofaciens pathogenic for grain-crops (wheat, rye) are presented. The LPS-protein complexes were isolated by a sparing procedure (extraction from microbial cells with a weak salt solution). They reacted with the homologous O sera and contained one to three antigenic determinants. Against the cells of warm-blooded animals (mice, humans) they exhibited the biological activity typical of endotoxins (stimulation of cytokine production, mitogenetic activity, etc.). The LCD of the biovar type strain was highly toxic to mice sensitized with D-galactosamine. The structural components of LPS macromolecules obtained by mild acidic degradation were characterized: lipid A, core oligosaccharide, and O-specific polysaccharide (OPS). Fatty acids 3-HO-C10:0, C12:0, 2-HO-C12:0, 3-HO-C12:0, C16:0, C16:1, C18:0, and C18:1 were identified in lipid A of all the strains, as well as the components of the hydrophilic part: glucosamine (GlcN), ethanolamine (EtN), phosphate, and phosphoethanolamine (EtN-P). In the core LPS, glucose (Glc), rhamnose (Rha), L-glycero-D-manno-heptose (Hep), GlcN, galactosamine (GalN), 2-keto-3-deoxy-D-mannooctonoic acid (KDO), alanine (Ala), and phosphate were present. The O chain of all the strains consisted of repeated elements containing a linear chain of three to four L-(two strains) or D-Rha (four strains) residues supplemented with a single residue of 3-acetamido-3,6-dideoxy-D-galactose (D-Fucp3Nac), N-acetyl-D-glucosamine (D-GlcpNAc), D-fucose (D-Fucf), or D-Rhap (strain-dependent) as a side substituent. In different strains the substitution position for Rha residues in the repeated components of the major rhamnan chain was also different. One strain exhibited a unique type of O-chain heterogeneity. Immunochemical investigation of the LPS antigenic properties revealed the absence of close serological relations between the strains of one pathovar; this finding correlates with the differences in their OPS structure. Resemblance between the investigated strains and other P. syringae strains with similar LPS structures was revealed. The results of LPS analysis indicate the absence of correlation between the OPS structure and the pathovar affiliation of the strains.  相似文献   
4.
The O-polysaccharide from the lipopolysaccharide of the phytopathogenic bacterium Pseudomonas syringae pv. mori NCPPB 1656 was studied by sugar analysis along with 1H and 13C NMR spectroscopy and found to be a new beta-(1-->2)-linked homopolymer of L-rhamnose.  相似文献   
5.
The paper deals with the study of the ice nucleation activity of the cells, extracellular lipopolysaccharides (ELPSs), lipopolysaccharides (LPSs), and their structural components (lipid A, core oligosaccharide, and O-specific polysaccharide) of Pseudomonas fluorescens, P. syringae, P.fragi, and P. pseudoalcaligenes. The aqueous suspensions of the intact cells of P. syringae IMV 1951 and IMV 185 began to freeze at -1 and -4 degrees C, respectively. This suggests that these cells possess ice nucleation activity. The aqueous cell suspensions of two other strains, P. fluorescens IMV 1433 and IMV 2125, began to freeze at lower temperatures than did distilled water (-9 degrees C), which suggests that the cells of these strains possess antifreeze activity. The ice nucleation activity of the bacterial strains studied did not show any correlation with their taxonomic status. The ice nucleation activity of ELPSs depended little on their concentration (within a concentration range of 0.2-0.4%). In most cases, the ice nucleation activity of ELPSs, LPSs, and their structural components differed from that of the intact cells from which these biopolymers were obtained. This may indicate that the biopolymers under study play a role in ice nucleation, but this role is not crucial. The relationship between the structure of LPSs and their effect on ice nucleation is discussed.  相似文献   
6.
Novel O-serotypes were revealed among Pseudomonas syringae pv. garcae strains by using a set of mouse monoclonal antibodies specific to the lipopolysaccharide O-polysaccharide. Structural studies showed that the O-polysaccharide of P. syringae pv. garcae NCPPB 2708 is a hitherto unknown linear L-rhamnan lacking strict regularity and having two oligosaccharide repeating units I and II, which differ in the position of substitution in one of the rhamnose residues and have the following structures: I: --> 3)-alpha-L-Rha-(1 --> 2)-alpha-L-Rha-(1 --> 2)-alpha-L-Rha-(1 --> 3)-alpha-L-Rha-(1 -->; II: --> 3)-alpha-L-Rha-(1 --> 3)-alpha-L-Rha-(1 --> 2)-alpha-L-Rha-(1 --> 3)-alpha-L-Rha-(1 -->. The branched polysaccharides of P. syringae pv. garcae ICMP 8047 and NCPPB 588 have the same L-rhamnan backbone with repeating units I and II and a lateral chain of (alpha1 --> 4)- or (alpha1 --> 3)-linked residues of 3-acetamido-3,6-dideoxy-D-galactose (D-Fuc3NAc). Several monoclonal antibody epitopes associated with the L-rhamnan backbone or the lateral alpha-D-Fuc3NAc residues were characterized.  相似文献   
7.
A method is developed for the preparation of D-rhamnose from an O-polysaccharide (OPS) isolated by mild acid hydrolysis of Azospirillum brasilense SR75 cell mass. After the OPS hydrolysis, D-rhamnose was recovered by gel-permeation chromatography on Toyopearl TSK HW-40 and was crystallized. The sugar activity was demonstrated immunochemically. The advantages of the method are that it expedites and simplifies the extraction of D-rhamnose and increases its yield.  相似文献   
8.
The O-polysaccharide of Rahnella aquatilis 95 U003 was obtained by mild acid degradation of the lipopolysaccharide and studied by sugar and methylation analyses, Smith degradation and (1)H and (13)C NMR spectroscopy, including 2D (1)H,(1)H COSY, TOCSY, ROESY, H-detected (1)H,(13)C HSQC and HMQC-TOCSY experiments. The O-polysaccharide was found to have a branched hexasaccharide repeating unit of the following structure:  相似文献   
9.
The lipopolysaccharide (LPS) preparation isolated from the bacterial mass of Pseudomonas fluorescens IMV 2366 (biovar III) by Westphal's method and purified by repeated ultracentrifugation contained S- and R-forms of molecules. The structural components of the LPS molecule—lipid A, core oligosaccharide, and O-specific polysaccharide—were obtained in the individual state and characterized. The main components of the lipid A hydrophobic moiety were 3-hydoxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, dodecanoic, and hexadecanoic fatty acids. Glucosamine, phosphoethanolamine, and phosphorus were identified as the components of the lipid A hydrophilic moiety. Rhamnose, glucose, galactose, glucosamine, galactosamine, alanine, phosphoethanolamine, phosphorus, and 2-keto-3-deoxyoctulosonic acid (KDO), as well as 2-amino-2,6-dideoxygalactose (FucN) and 3-amino-3,6-dideoxyglucose (Qui3N), were revealed in the composition of the core oligosaccharide fractions. O-specific polysaccharide chains were composed of repeating trisaccharide units consisting of residues of L-rhamnose (L-Rha), 2-acetamido-2,6-dideoxy-D-galactose (D-FucNAc), and 3-acylamido-3,6-dideoxy-D-glucose (D-Qui3NAcyl), where Acyl = 3-hydroxy-2,3-dimethyl-5-hydroxyprolyl. Neither double immunodiffusion in agar not the immunoenzymatic assay revealed serological relations between the strain studied and the P. fluorescens strains studied earlier.  相似文献   
10.
The following structure of the O-polysaccharide of Pragia fontium 27480 was elucidated by sugar analysis, including determination of the absolute configurations of the monosaccharides, and Smith degradation along with 1D and 2D 1H and 13C NMR spectroscopy:→4)-β-d-ManpNAc3NAcA-(1→2)-α-l-Rhap-(1→3)-β-l-Rhap-(1→4)-α-d-GlcpNAc-(1→where ManNAc3NAcA stands for 2,3-diacetamido-2,3-dideoxymannuronic acid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号