首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   18篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2009年   5篇
  2008年   12篇
  2007年   5篇
  2006年   6篇
  2005年   5篇
  2004年   7篇
  2003年   3篇
  2002年   7篇
  2001年   7篇
  2000年   5篇
  1999年   6篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
排序方式: 共有127条查询结果,搜索用时 529 毫秒
1.
2.
The bacterial flagellar filament is a very large macromolecular assembly of a single protein, flagellin. Various supercoiled states of the filament exist, which are formed by two structurally different conformations of flagellin in different ratios. We investigated the correlation between supercoiling of the protofilaments and molecular dynamics in the flagellar filament using quasielastic and elastic incoherent neutron scattering on the picosecond and nanosecond timescales. Thermal fluctuations in the straight L- and R-type filaments were measured and compared to the resting state of the wild-type filament. Amplitudes of motion on the picosecond timescale were found to be similar in the different conformational states. Mean-square displacements and protein resilience on the 0.1 ns timescale demonstrate that the L-type state is more flexible and less resilient than the R-type, whereas the wild-type state lies in between. Our results provide strong support that supercoiling of the protofilaments in the flagellar filament is determined by the strength of molecular forces in and between the flagellin subunits.  相似文献   
3.
Halophilic proteins and the influence of solvent on protein stabilization   总被引:1,自引:0,他引:1  
Competition between protein-solvent and protein-protein interactions is arguably the most important contributing factor to polypeptide folding in general. A study of halophilic proteins, correlating their stability and solution structures in different conditions, focuses on the effects of a high salt solvent. A mechanism is proposed to explain how these proteins have adapted to such an extreme environment.  相似文献   
4.
G Zaccai  S Y Xian 《Biochemistry》1988,27(4):1316-1320
Yeast tRNA(Phe) was studied in different salt-containing solvents by UV absorbance and small-angle neutron scattering (SANS). This extends results obtained previously in NaCl and KCl solutions [Li, Z.-Q., Giegé, R., Jacrot, B., Oberthür, R., Thierry, J. C., & Zaccai, G. (1983) Biochemistry 22, 4380-4388]. As expected, at low concentrations of all salts studied, the tRNA molecule is unfolded. The importance of specific counterion interactions and the flexibility of the macromolecule are emphasized by the observation that it cannot take up its folded structure in N(CH3)4Cl solvents, even when that salt concentration is increased to 1 M, in the absence of Mg ions. In CsCl solvents, on the other hand, the folded conformation is obtained in salt concentrations above about 0.2 M, similar to NaCl or KCl. By a comparison of SANS results in CsCl H2O and CsCl 2H2O solvents with the data from NaCl and KCl solvents, thermodynamic and structural parameters were derived for the solvated macromolecule. All the data are accounted for, quantitatively, by a model for the particle in NaCl, KCl, or CsCl solution made up of tRNA76-, closely associated with 76 positive hydrated counterions, surrounded by an aqueous solvent layer that excludes salt (and, therefore, of density different from that of bulk solvent). The mass of water in that layer depends on salt concentration, and the values found are consistent with those predicted by the Donnan effect.  相似文献   
5.
Small angle neutron scattering (SANS) results revealed that contrary to most reports C9 is not a globular protein. Its radius of gyration (Rg) at pH 8 and an ionic strength of 0.5 is 32.2 +/- 1.4 A increasing to 35 A at physiologic ionic strength. In contrast, C8, which has a 2.2-fold larger mass, has a similar Rg value [34.6 +/- 1.6 A]. Calibration plots of Rg vs. M(r) indicate that native C8 is a spherical protein whereas native C9 is elongated. From previous reports it was known that native C8 and C9 associate in solutions of low ionic strength. SANS results confirmed this observation but also demonstrated that C8-C9 heterodimers are already formed at physiologic ionic strength. The dimeric complex is globular [Rg = 40 +/- 0.8 A] indicating that the proteins associate side-by-side rather than end-to-end. In contrast, in presence of the drug Suramin, a potent inhibitor of the assembly of the C5b-9 complex, C9 forms a complex with twice the molecular mass that is still elongated (Rg = 48.8 +/- 0.8 A), suggesting that in this case the protein dimerizes end-to-end via a bridging Suramin molecule.  相似文献   
6.
Endoribonuclease RNase E appears to control the rate-limiting step that mediates the degradation of many mRNA species in bacteria. In this work, an RNase E-like activity in Archaea is described. An endoribonucleolytic activity from the extreme halophile Haloarcula marismortui showed the same RNA substrate specificity as the Escherichia coli RNase E and cross-reacted with a monoclonal antibody raised against E. coli RNase E. The archaeal RNase E activity was partially purified from the extreme halophilic cells and shown, contrary to the E. coli enzyme, to require a high salt concentration for cleavage specificity and stability. These data indicate that a halophilic RNA processing enzyme can specifically recognize and cleave mRNA from E. coli in an extremely salty environment (3 M KCI). Having recently been shown in mammalian cells (A. Wennborg, B. Sohlberg, D. Angerer, G. Klein, and A. von Gabain, Proc. Natl. Acad. Sci. USA 92:7322-7326, 1995), RNase E-like activity has now been identified in all three evolutionary domains: Archaea, Bacteria, and Eukarya. This strongly suggests that mRNA decay mechanisms are highly conserved despite quite different environmental conditions.  相似文献   
7.
A new way of studying RNA-protein complexes, using neutron small angle scattering in solution, is described and was applied in the case of the system, yeast valyl-tRNA synthetase, interacting with its cognate and non cognate yeast tRNAs. It was shown that, when limited amounts of tRNA (either cognate or non cognate) are added to valyl-tRNA synthetase, a complex consisting of two enzyme molecules and one tRNA molecule is first formed. It is subsequently dissociated to a one to one complex when more tRNA is present in the solution. The association curve shows a maximum for a molecular ratio, enzyme over tRNA, equal to 2.  相似文献   
8.
Tehei M  Zaccai G 《The FEBS journal》2007,274(16):4034-4043
Work on the relationship between hyperthermophile protein dynamics, stability and activity is reviewed. Neutron spectroscopy has been applied to measure and compare the macromolecular dynamics of various hyperthermophilic and mesophilic proteins, under different conditions. First, molecular dynamics have been analyzed for the hyperthermophile malate dehydrogenase from Methanococcus jannaschii and a mesophilic homologue, the lactate dehydrogenase from Oryctolagus cunniculus (rabbit) muscle. The neutron scattering approach has provided independent measurements of the global flexibility and structural resilience of each protein, and it has been demonstrated that macromolecular dynamics represents one of the molecular mechanisms of thermoadaptation. The resilience was found to be higher for the hyperthermophilic protein, thus ensuring similar flexibilities in both enzymes at their optimal activity temperature. Second, the neutron method has been developed to quantify the average macromolecular flexibility and resilience within the natural crowded environment of the cell, and mean macromolecular motions have been measured in vivo in psychrophile, mesophile, thermophile and hyperthermophile bacteria. The macromolecular resilience in bacteria was found to increase with adaptation to high temperatures, whereas flexibility was maintained within narrow limits, independent of physiological temperature for all cells in their active state. Third, macromolecular motions have been measured in free and immobilized dihydrofolate reductase from Escherichia coli. The immobilized mesophilic enzyme has increased stability and decreased activity, so that its properties are changed to resemble those of a thermophilic enzyme. Quasi-elastic neutron scattering measurements have also been performed to probe the protein motions. Compared to the free enzyme, the average height of the activation free energy barrier to local motions was found to be increased by 0.54 kcal.mol(-1) in the immobilized dihydrofolate reductase, a value that is of the same order as expected from the theoretical rate equation.  相似文献   
9.
A standard analysis of the scattered neutron incoherent elastic intensity measured with very good energy resolution yields elastic scans, i.e., mean-square displacements of atomic motions (in a pico to nanosecond time scale) in a sample as a function of temperature. This provides a quick way for characterizing the dynamical behavior of biological macromolecules, such behavior being correlated with biological function and activity. Elastic scans of proteins exhibit a dynamical transition at approximately 200 K, marking a cross-over in molecular fluctuations between harmonic and nonharmonic dynamical regimes. This paper presents an approach allowing analysis of the elastic scan in terms of force constants and related parameters, such as the free energy barrier DeltaG at the transition. We find that the increased protein flexibility beyond the dynamical transition is associated with DeltaG approximately equals RT and effective force constants of the order of 0.1-3 N/m. The analysis provides a set of parameters for characterizing molecular resilience and exploring relations among dynamics, function, and activity in proteins.  相似文献   
10.
The quaternary structures of monomeric and dimeric Drosophila non-claret disjunctional (ncd) constructs were investigated using synchrotron x-ray and neutron solution scattering, and their low resolution shapes were restored ab initio from the scattering data. The experimental curves were further compared with those computed from crystallographic models of one monomeric and three available dimeric ncd structures in the microtubule-independent ADP-bound state. These comparisons indicate that accounting for the missing parts in the crystal structures for all these constructs is indispensable to obtain reasonable fits to the scattering patterns. A ncd construct (MC6) lacking the coiled-coil region is monomeric in solution, but the calculated scattering from the crystallographic monomer yields a poor fit to the data. A tentative configuration of the missing C-terminal residues in the form of an antiparallel beta-sheet was found that significantly improves the fit. The atomic model of a short dimeric ncd construct (MC5) without 2-fold symmetry is found to fit the data better than the symmetric models. Addition of the C-terminal residues to both head domains gives an excellent fit to the x-ray and neutron experimental data, although the orientation of the beta-sheet differs from that of the monomer. The solution structure of the long ncd construct (MC1) including complete N-terminal coiled-coil and motor domains is modeled by adding a straight coiled-coil section to the model of MC5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号