首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141926篇
  免费   11342篇
  国内免费   3427篇
  2022年   997篇
  2021年   2965篇
  2020年   2045篇
  2019年   2568篇
  2018年   3232篇
  2017年   2753篇
  2016年   3664篇
  2015年   4179篇
  2014年   5171篇
  2013年   6289篇
  2012年   7075篇
  2011年   6894篇
  2010年   4959篇
  2009年   4287篇
  2008年   5532篇
  2007年   5235篇
  2006年   4796篇
  2005年   4274篇
  2004年   4144篇
  2003年   3942篇
  2002年   3508篇
  2001年   5322篇
  2000年   4951篇
  1999年   3827篇
  1998年   1420篇
  1997年   1350篇
  1996年   1217篇
  1995年   1147篇
  1994年   1110篇
  1993年   1047篇
  1992年   2725篇
  1991年   2704篇
  1990年   2660篇
  1989年   2387篇
  1988年   2188篇
  1987年   2147篇
  1986年   1963篇
  1985年   1938篇
  1984年   1593篇
  1983年   1381篇
  1982年   1003篇
  1979年   1490篇
  1978年   1190篇
  1977年   1061篇
  1976年   1018篇
  1975年   1199篇
  1974年   1297篇
  1973年   1398篇
  1972年   1234篇
  1971年   1073篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
We have identified mouse and human FKBP60, a new member of the FKBP gene family. FKBP60 shares strongest homology with FKBP65 and SMAP. FKBP60 contains a hydrophobic signal peptide at the N-terminus, 4 peptidyl-prolyl cis/trans isomerase (PPIase) domains and an endoplasmic reticulum retention motif (HDEL) at the C-terminus. Immunodetection of HA-tagged FKBP60 in NIH-3T3 cells suggests that FKBP60 is segregated to the endoplasmic reticulum. Northern blot analysis shows that FKBP60 is predominantly expressed in heart, skeletal muscle, lung, liver and kidney. With N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide as a substrate, recombinant GST-FKBP60 is shown to accelerate effectively the isomerization of the peptidyl-prolyl bond. This isomerization activity is inhibited by FK506. mFKBP60 binds Ca2+ in vitro, presumably by its C-terminal EF-hand Ca2+ binding motif, and is phosphorylated in vivo. hFKBP60 has been mapped to 7p12 and/or 7p14 by fluorescence in situ hybridization (FISH).  相似文献   
2.
3.
Conventional therapies for prostate cancer, especially in its androgen-independent form, may result in the survival of small populations of resistant cells with tumor-initiating potential. These “cancer stem cells” are believed to be responsible for cancer relapse, and therapeutic strategies targeting these cells are of great importance. Telomerase is a ribonucleoprotein enzyme responsible for telomere elongation and is activated in the majority of malignancies, including prostate cancer, but is absent in most normal cells. Putative tumor-initiating cells have significant levels of telomerase, indicating that they are an excellent target for telomerase inhibition therapy. In this review, we present some evidence for the hypothesis that conventional therapies (standard chemotherapy and/or radiation therapy) in combination with telomerase inhibitors may result in effective and more durable responses.  相似文献   
4.
Based on its proven anabolic effects on bone in osteoporosis patients, recombinant parathyroid hormone (PTH1-34) has been evaluated as a potential therapy for skeletal repair. In animals, the effect of PTH1-34 has been investigated in various skeletal repair models such as fractures, allografting, spinal arthrodesis and distraction osteogenesis. These studies have demonstrated that intermittent PTH1-34 treatment enhances and accelerates the skeletal repair process via a number of mechanisms, which include effects on mesenchymal stem cells, angiogenesis, chondrogenesis, bone formation and resorption. Furthermore, PTH1-34 has been shown to enhance bone repair in challenged animal models of aging, inflammatory arthritis and glucocorticoid-induced bone loss. This pre-clinical success has led to off-label clinical use and a number of case reports documenting PTH1-34 treatment of delayed-unions and non-unions have been published. Although a recently completed phase 2 clinical trial of PTH1-34 treatment of patients with radius fracture has failed to achieve its primary outcome, largely because of effective healing in the placebo group, several secondary outcomes are statistically significant, highlighting important issues concerning the appropriate patient population for PTH1-34 therapy in skeletal repair. Here, we review our current knowledge of the effects of PTH1-34 therapy for bone healing, enumerate several critical unresolved issues (e.g., appropriate dosing regimen and indications) and discuss the long-term potential of this drug as an adjuvant for endogenous tissue engineering.  相似文献   
5.
6.
The relationship between airway responsiveness to inhaled antigen and histamine, immunologic release of lung histamine, immunologic responsiveness of skin, and specific immunoglobulin E (IgE) antibodies were examined in 11 inbred allergic dogs immunized with extracts of ragweed and grass and 5 nonimmunized control dogs from the same colony. Airway responsiveness to antigen and histamine was characterized by the doses that increased the airflow resistance of the total respiratory system to twice the control values (ED200). Highly significant correlations were found between airway responsiveness and cutaneous responsiveness to antigen and other immunologic characteristics (e.g., IgE and histamine released from lung by inhaled antigen) in all dogs. In ragweed-sensitized dogs, there was an inverse correlation between immunologic responsiveness (reflected by the cutaneous response to antigen and histamine released from lung by inhaled antigen) and nonimmunologic responsiveness of airways (histamine ED200: r = 0.73, P less than 0.05 and r = 0.75, P less than 0.01, respectively). Antigen ED200 was also correlated with histamine release from lung after antigen inhalation (r = 0.74; P less than 0.01). We conclude that airway reactions to inhaled antigen in allergic dogs are dependent not only on immunologic factors but also on the degree of nonimmunologic airway responsiveness to histamine and that these factors are correlated inversely.  相似文献   
7.
C A Yu  L Q Gu  Y Z Lin  L Yu 《Biochemistry》1985,24(15):3897-3902
The effect of the alkyl side chain of the ubiquinone molecule on the electron-transfer activity of ubiquinone in mitochondrial succinate-cytochrome c reductase is studied by using synthetic ubiquinone derivatives that possess the basic ubiquinone structure of 2,3-dimethoxy-5-methyl-1,4-benzoquinone with different alkyl side chains at the 6-position. The alkyl side chains vary in chain length, degree of saturation, and location of double bonds. When a ubiquinone derivative is used as an electron acceptor for succinate-ubiquinone reductase, an alkyl side chain of six carbons is needed to obtain the maximum activity. However, when it serves as an electron donor for ubiquinol-cytochrome c reductase or as a mediator in succinate-cytochrome c reductase, an alkyl side chain of 10 carbons gives maximal efficiency. Introduction of one or two isolated double bonds into the alkyl side chain of the ubiquinone molecule has little effect on electron-transfer activity. However, a conjugated double bond system in the alkyl side chain drastically reduces electron-transfer efficiency. The effect of the conjugated double bond system on the electron-transferring efficiency of ubiquinone depends on its location in the alkyl side chain. When location is far from the benzoquinone ring, the effect is minimal. These observations together with the results obtained from photoaffinity-labeling studies lead us to conclude that flexibility in the portion of the alkyl side chain immediately adjacent to the benzoquinone ring is required for the electron-transfer activity of ubiquinone.  相似文献   
8.
The ionic composition of the currents underlying the acetylcholine (ACh) depolarizations in the identified neurons B1 and B3 of the buccal ganglia of Helix pomatia was analysed. The equilibrium potential of the ACh responses was -2.8 +/- 0.6 mV (N = 49) and -4.0 +/- 0.7 mV (N = 79; mean +/- SEM) in the neurons B1 and B3, respectively. Replacement of NaCl in the bath solution by sucrose shifted the ACh equilibrium potential into the negative direction. A similar but less pronounced shift occurred when Ca2+ was substituted for Na+. Substitution of Cl- in the bath solution by propionate or an increase of the intracellular Cl- concentration did not affect the ACh equilibrium potential. Changes of K+ concentration in the bath between 1 and 50 mmol/l left the ACh equilibrium potential nearly unaffected when the Na+ concentration was at the control level. With a simultaneous reduction of extracellular Na+ an increase of K+ concentration shifted the ACh equilibrium potential towards more positive potentials. The findings are compatible with calculated K+ permeabilities if a K+ redistribution across the cell membrane is considered. In the neurons B1 and B3, channels operated by ACh are permeable for K+, Na+ and Ca2+, with the relative permeabilities 1.6:1.0:0.1.  相似文献   
9.
L-lysine-alpha-oxidase, a new fungal enzyme catalyzing oxidative deamination of L-lysine, exerts an inhibitory effect on DNA, RNA and protein synthesis in human cells of carcinoma ovarius (CaOv) in vitro.  相似文献   
10.
Plant somatic cells have the capability to switch their cell fates from differentiated to undifferentiated status under proper culture conditions, which is designated as totipotency. As a result, plant cells can easily regenerate new tissues or organs from a wide variety of explants. However, the mechanism by which plant cells have such remarkable regeneration ability is still largely unknown. In this study, we used a set of meristem-specific marker genes to analyze the patterns of stem cell differentiation in the processes of somatic embryogenesis as well as shoot or root organogenesis in vitro. Our studies furnish preliminary and important information on the patterns of the de novo stem cell differentiation during various types of in vitro organogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号