首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   17篇
  2021年   6篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   6篇
  2015年   14篇
  2014年   3篇
  2013年   15篇
  2012年   14篇
  2011年   7篇
  2010年   12篇
  2009年   9篇
  2008年   8篇
  2007年   5篇
  2006年   5篇
  2005年   9篇
  2004年   18篇
  2003年   7篇
  2002年   9篇
  2001年   3篇
  2000年   10篇
  1999年   9篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1991年   6篇
  1990年   2篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   8篇
  1984年   2篇
  1983年   5篇
  1981年   2篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1974年   3篇
  1973年   3篇
  1971年   2篇
  1967年   2篇
  1957年   1篇
  1953年   1篇
  1952年   1篇
排序方式: 共有274条查询结果,搜索用时 968 毫秒
1.
Vertebrate metamorphosis is often marked by dramatic morphological and physiological changes of the alimentary tract, along with major shifts in diet following development from larva to adult. Little is known about how these developmental changes impact the gut microbiome of the host organism. The metamorphosis of the sea lamprey (Petromyzon marinus) from a sedentary filter-feeding larva to a free-swimming sanguivorous parasite is characterized by major physiological and morphological changes to all organ systems. The transformation of the alimentary canal includes closure of the larval esophagus and the physical isolation of the pharynx from the remainder of the gut, which results in a nonfeeding period that can last up to 8 months. To determine how the gut microbiome is affected by metamorphosis, the microbial communities of feeding and nonfeeding larval and parasitic sea lamprey were surveyed using both culture-dependent and -independent methods. Our results show that the gut of the filter-feeding larva contains a greater diversity of bacteria than that of the blood-feeding parasite, with the parasite gut being dominated by Aeromonas and, to a lesser extent, Citrobacter and Shewanella. Phylogenetic analysis of the culturable Aeromonas from both the larval and parasitic gut revealed that at least five distinct species were represented. Phenotypic characterization of these isolates revealed that over half were capable of sheep red blood cell hemolysis, but all were capable of trout red blood cell hemolysis. This suggests that the enrichment of Aeromonas that accompanies metamorphosis is likely related to the sanguivorous lifestyle of the parasitic sea lamprey.  相似文献   
2.
Sequential transposition of Tn916 among Staphylococcus aureus protoplasts   总被引:4,自引:0,他引:4  
S C Yost  J M Jones  P A Pattee 《Plasmid》1988,19(1):13-20
Transposition of the Streptococcus faecalis conjugal tetracycline-resistance transposon Tn916 between S. aureus strains occurred when protoplasts of donor and recipient strains were regenerated together without prior fusion. Under these conditions, only Tn916 was transferred; spontaneous fusion of parental protoplasts is therefore unlikely to be responsible for Tn916 transfer. While the exact nature of this transfer remains unclear, it appears to resemble Tn916 conjugal transposition reported in S. faecalis. Evidence for sequential transpositions of Tn916 was obtained by 3-factorial transformation analyses and confirmed by DNA-DNA hybridizations. The ability of Tn916 to transpose within S. aureus and occupy diverse chromosomal sites demonstrates the value of this transposon in genetic studies of S. aureus.  相似文献   
3.
We demonstrate that both phospholipase A1 and phospholipase A2 are associated with isolated yeast mitochondria (Saccharomyces cerevisiae). Activity assays indicate that, unlike most other mitochondrial phospholipases A, the yeast enzymes are Ca(2+)-independent with acidic (pH 4-5) as well as alkaline (pH 8-9) pH optima. Data obtained with mitochondria isolated from either fermenting or respiring cells, and initial observations with a petite strain, strongly suggest that a phospholipase A2 with an acidic pH optimum functions in the in vivo adaptation and maintenance of mitochondrial membranes required for respiration.  相似文献   
4.
We have investigated the esterification by liver membranes of retinol bound to cellular retinol-binding protein (CRBP). When CRBP carrying [3H]retinol as its ligand was purified from rat liver cytosol and incubated with rat liver microsomes, a significant fraction of the [3H]retinol was converted to [3H]retinyl ester. Esterification of the CRBP-bound [3H]retinol, which was maximal at pH 6-7, did not require the addition of an exogenous fatty acyl group. Indeed, when additional palmitoyl-CoA or coenzyme A was provided, the rate of esterification increased either very slightly or not at all. The esterification reaction had a Km for [3H]retinol-CRBP of 4 +/- 0.6 microM and a maximum velocity of 145 +/- 52 pmol/min/mg of microsomal protein (n = 4). The major products were retinyl palmitate/oleate and retinyl stearate in a ratio of approximately 2 to 1 over a range of [3H]retinol-CRBP concentrations from 1 to 8 microM. The addition of progesterone, a known inhibitor of the acyl-CoA:retinol acyltransferase reaction, consistently increased the rate of retinyl ester formation when [3H]retinol was delivered bound to CRBP. These experiments indicate that retinol presented to liver microsomal membranes by CRBP can be converted to retinyl ester and that this process, in contrast to the esterification of dispersed retinol, is independent of the addition of an activated fatty acid and produces a pattern of retinyl ester species similar to that observed in intact liver. A possible role of phospholipids as endogenous acyl donors in the esterification of retinol bound to CRBP is supported by our observations that depletion of microsomal phospholipid with phospholipase A2 prior to addition of retinol-CRBP decreased the retinol-esterifying activity almost 50%. Conversely, incubating microsomes with a lipid-generating system containing choline, CDP-choline, glycerol 3-phosphate, and an acyl-CoA-generating system prior to addition of retinol-CRBP increased retinol esterification significantly as compared to buffer-treated controls.  相似文献   
5.
R Gysin  B Yost  S D Flanagan 《Biochemistry》1986,25(6):1271-1278
Creatine kinase, actin, and nu 1 are three proteins of Mr 43 000 associated with membranes from electric organ highly enriched in nicotinic acetylcholine receptor. High levels of creatine kinase are required to maintain adequate ATP levels, while actin may play a role in maintaining the synaptic cytoskeleton. Previous investigations have prompted the conclusion that postsynaptic specializations at the receptor-enriched membrane domains in electroplax contain the brain form of creatine kinase rather than the form of creatine kinase predominantly found in muscle. We have examined this conclusion by purifying Torpedo brain creatine kinase to virtual homogeneity in order to examine its immunochemical, molecular, and electrophoretic properties. On the basis of immunological cross-reactivity and isozyme analysis, the receptor-associated creatine kinase is identified to be of the muscle type. When the molecular characteristics of Torpedo brain and muscle creatine kinase are compared, the brain enzyme is positioned at a more basic pH during chromatofocusing and on two-dimensional gel electrophoresis (pI = 7.5-7.9). Furthermore, electrophoretic mobilities of the brain and muscle forms of creatine kinase differ in sodium dodecyl sulfate electrophoresis: the brain isozyme of creatine kinase has lower apparent molecular weight (Mr 41 000) when compared with the muscle enzyme (Mr 43 000). On the basis of the results of our current investigations, the hypothesis that the brain isozyme of creatine kinase is a component of the postsynaptic specializations of the Torpedo californica electroplax must be abandoned. Recent sequence data have established close homology between Torpedo and mammalian muscle creatine kinases. On the basis of electrophoretic criteria, our results indicate that a lower degree of homology exists between the brain isozymes.  相似文献   
6.
The effect of choline deficiency on the de novo pathway for phosphatidylcholine (PC) synthesis in the lung was investigated in rats fed a washed soy protein (lipotrophic) diet deficient in choline and methionine for 2-3 wk. Lungs from lipotrophic rats showed a decreased content of choline and choline-phosphate (P less than 0.05) compared with control but no change in content of cytidine 5'-diphosphocholine or PC. Isolated perfused lungs from lipotrophic rats were evaluated for choline and fatty acid utilization for PC synthesis. Lipotrophic lungs perfused with 5 microM [14C-methyl]-choline chloride showed increased incorporation into PC while there was no significant effect at saturating levels of choline (100 microM). There was increased incorporation of [1-14C]-palmitic acid into PC and diglyceride and increased incorporation of D-[U-14C]glucose into fatty acids of PC. Increased choline and glucose incorporation was not due to alteration of intracellular specific activity of these substrates. This study indicates the utilization of choline and fatty acid for PC synthesis is stimulated as a result of choline deficiency while lung CDP-choline concentration is maintained, possibly through regulation of choline phosphate cytidyl transferase activity. These mechanisms compensate for decreased choline availability to maintain the PC content of lungs.  相似文献   
7.
[adenine-U-14C]ADP-ribose-agmatine and [adenine-U-14C ))ADP-ribose-histone were synthesized by an NAD:arginine ADP-ribosyltransferase from [14C]NAD and agmatine and histone, respectively. The pseudo-first order rate constants for breakdown of the two components either in 0.4 N NaOH or in 0.4 M neutral hydroxylamine were identical. Hydroxylamine treatment of [14C]ADP-ribose-agmatine or [32P]ADP-ribose-histone yielded a single radioactive product which was separated by high pressure liquid chromatography and identified as ADP-ribose-hydroxamate by the formation of a ferric chloride complex. Hydrolysis of ADP-ribose-hydroxamate with snake venom phosphodiesterase resulted in the formation of 5'-AMP, consistent with the presence of a pyrophosphate bond. Incubation of ADP-ribose-[14C]agmatine, synthesized by the ADP-ribosyltransferase from NAD and [14C]agmatine, with 0.4 M neutral hydroxylamine resulted in the release of [14C]agmatine rather than phosphoribosyl[14C]agmatine. In addition, neither NAD nor ADP-ribose reacts with hydroxylamine; i.e. there was no evidence of nucleophilic attack by hydroxylamine at the pyrophosphate bond. The ADP-ribosyl-protein linkage formed by the NAD:arginine ADP-ribosyltransferase is considerably more stable to hydroxylamine than is the ADP-ribose-glutamate bond. The presence of ADP-ribose-arginine and ADP-ribose-glutamate synthesized by the ADP-ribosyltransferase and poly(ADP-ribose) synthetase, respectively, may be the chemical basis for the "hydroxylamine-stable" and "hydroxylamine-labile" bonds described by Hilz (Hilz, H. (1981) Hoppe-Seyler's Z. Physiol. Chem. 362, 1415-1425).  相似文献   
8.
In order to understand the nature of ATP and L-glutamate binding to glutamine synthetase, and the involvement of Arg 339 and Arg 359 in catalysis, these amino acids were changed to cysteine via site-directed mutagenesis. Individual mutations (Arg-->Cys) at positions 339 and 359 led to a sharp drop in catalytic activity. Additionally, the Km values for the substrates ATP and glutamate were elevated substantially above the values for wild-type (WT) enzyme. Each cysteine was in turn chemically modified to an arginine "analog" to attempt to "rescue" catalytic activity by covalent modification; 2-chloroacetamidine (CA) (producing a thioether) and 2,2'-dithiobis (acetamidine)(DTBA) (producing a disulfide) were the reagents used to effect these chemical transformations. Upon reaction with CA, both R339C and R359C mutants showed a significant regain of catalytic activity (50% and 70% of WT, respectively) and a drop in Km value for ATP close to that for WT enzyme. With DTBA, chemically modified R339C had a greater kcat than WT glutamine synthetase, but chemically modified R359C only regained a small amount of activity. Modification with DTBA was quantitative for each mutant and each modified enzyme had similar Km values for both ATP and glutamate. The high catalytic activity of DTBA-modified R339C could be reversed to that of unmodified R339C by treatment with dithiothreitol, as expected for a modified enzyme containing a disulfide bond. Modification of each cysteine-containing mutant to a lysine "analog" was accomplished using 3-bromopropylamine (BPA).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
9.
The molecular evolution of mammalian Y-linked DNA sequences is of special interest because of their unique mode of inheritance: most Y- linked sequences are clonally inherited from father to son. Here we investigate the use of Y-linked sequences for phylogenetic inference. We describe a comparative analysis of a 515-bp region from the male sex- determining locus, Sry, in 22 murine rodents (subfamily Murinae, family Muridae), including representatives from nine species of Mus, and from two additional murine genera--Mastomys and Hylomyscus. Percent sequence divergence was < 0.01% for comparisons between populations within a species and was 0.19%-8.16% for comparisons between species. Our phylogenetic analysis of 12 murine taxa resulted in a single most- parsimonius tree that is highly concordant with phylogenies based on mitochondrial DNA and allozymes. A total evidence tree based on the combined data from Sry, mitochondrial DNA, and allozymes supports (1) the monophyly of the subgenus Mus, (2) its division into a Palearctic group (M. musculus, M. domesticus, M. spicilegus, M. Macedonicus, and M. spretus) and an Oriental group (M. cookii++, M. cervicolor, and M. caroli), and (3) sister-group relationships between M. spicilegus and M. macedonicus and between M. cookii and M. cervicolor. We argue that Y- chromosome DNA sequences represent a valuable new source of characters for phylogenetic inference.   相似文献   
10.
Eggs of Xenopus laevis undergo a postfertilization cortical rotation that specifies the position of the dorso-ventral axis and activates a transplantable dorsal-determining activity in dorsal blastomeres by the 32-cell stage. There have heretofore been no reported dorso-ventral asymmetries in endogenous signaling proteins that may be involved in this dorsal-determining activity during early cleavage stages. We focused on β-catenin as a candidate for an asymmetrically localized dorsal-determining factor since it is both necessary and sufficient for dorsal axis formation. We report that β-catenin displays greater cytoplasmic accumulation on the future dorsal side of the Xenopus embryo by the two-cell stage. This asymmetry persists and increases through early cleavage stages, with β-catenin accumulating in dorsal but not ventral nuclei by the 16- to 32cell stages. We then investigated which potential signaling factors and pathways are capable of modulating the steady-state levels of endogenous β-catenin. Steadystate levels and nuclear accumulation of β-catenin increased in response to ectopic Xenopus Wnt-8 (Xwnt-8) and to the inhibition of glycogen synthase kinase-3, whereas neither Xwnt-5A, BVg1, nor noggin increased β-catenin levels before the mid-blastula stage. As greater levels and nuclear accumulation of β-catenin on the future dorsal side of the embryo correlate with the induction of specific dorsal genes, our data suggest that early asymmetries in β-catenin presage and may specify dorso-ventral differences in gene expression and cell fate. Our data further support the hypothesis that these dorso-ventral differences in β-catenin arise in response to the postfertilization activation of a signaling pathway that involves Xenopus glycogen synthase kinase-3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号