首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   8篇
  2022年   1篇
  2020年   6篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   4篇
  2013年   8篇
  2012年   4篇
  2011年   7篇
  2010年   2篇
  2008年   4篇
  2007年   2篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2003年   4篇
  2002年   4篇
  2000年   1篇
  1993年   1篇
  1988年   2篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
1.
Dissolved carbon dioxide (dCO2) is a well-known critical parameter in bioprocesses due to its significant impact on cell metabolism and on product quality attributes. Processes run at small-scale faces many challenges due to limited options for modular sensors for online monitoring and control. Traditional sensors are bulky, costly, and invasive in nature and do not fit in small-scale systems. In this study, we present the implementation of a novel, rate-based technique for real-time monitoring of dCO2 in bioprocesses. A silicone sampling probe that allows the diffusion of CO2 through its wall was inserted inside a shake flask/bioreactor and then flushed with air to remove the CO2 that had diffused into the probe from the culture broth (sensor was calibrated using air as zero-point calibration). The gas inside the probe was then allowed to recirculate through gas-impermeable tubing to a CO2 monitor. We have shown that by measuring the initial diffusion rate of CO2 into the sampling probe we were able to determine the partial pressure of the dCO2 in the culture. This technique can be readily automated, and measurements can be made in minutes. Demonstration experiments conducted with baker's yeast and Yarrowia lipolytica yeast cells in both shake flasks and mini bioreactors showed that it can monitor dCO2 in real-time. Using the proposed sensor, we successfully implemented a dCO2-based control scheme, which resulted in significant improvement in process performance.  相似文献   
2.
3.
Stable isotope analysis (SIA) has emerged as an important tool for understanding consumer diets and diet shifts. However, although the general idea behind SIA is clear, the interpretation of data is often fraught with problems because tissue turnover and fractionations are not known. We investigated shifts in stable isotope composition of spiders following a diet shift, using mealworms fed either maize (C4) or wheat (C3) flour. Mealworms had different carbon isotope composition depending on their diet and this difference was reflected in spider body parts. In the experiment, we first fed the spiders on a diet of either maize‐fed or wheat‐fed mealworms and then switched diet at the time of the second molt. Spiders were then sampled repeatedly until the next molt. We sampled both legs and abdomens, as these are presumed to have different turnover of tissue, and also molt remains were sampled when this was relevant. The data indicated that the spider legs had a turnover of about 20 days, whereas the spider abdomens had a turnover of about 8 days. Molt remains had the slowest turnover and reflected the diet at the previous molt, when the exoskeleton was formed. Both these observations indicate that SIA may be successfully used for elucidating diet shifts. More problematic was the fact that fractionation of carbon isotope ratios varied with body parts and diets. When spiders were fed maize‐mealworms then the fractionation was larger for abdomens, but when the spiders were fed wheat‐mealworms then the fractionation was larger for legs. The mechanisms underlying this pattern are unclear and deserve further attention.  相似文献   
4.
Two prototype 24-unit microbioreactors are presented and reviewed for their relative merits. The first used a standard 24-well plate as the template, while the second consisted of 24-discrete units. Both systems used non-invasive optical sensors to monitor pH and dissolved oxygen. The systems were used to cultivate Escherichia coli. Both designs had their merits and the results obtained are presented. In addition, dissolved oxygen control was demonstrated at the milliliter scale and 24 simultaneously monitored fermentations were successfully carried out. These results demonstrated high quality high throughput bioprocessing and provide important insights into operational parameters at small scale.  相似文献   
5.
In comparative and evolutionary aspects in humans, the middle meningeal artery enters the cranium through the foramen spinosum, whereas in great apes the middle meningeal artery can enter the cranium through foramen spinosum, through foramen ovale or through petrosphenoid fissure. Generally, in nonhuman primates the anterior meningeal system is associated with the ophthalmic branch of the internal carotid artery. The vessels joining the two systems pass through the additional channels: the superior orbital fissure or through the cranio-orbital foramen. In anatomically modern humans, the absence of foramen spinosum involves abnormal development and course of the middle meningeal artery and it is usually accompanied with replacement of the conventional middle meningeal artery with such, arising from the ophthalmic artery system. In these cases the middle meningeal artery most often enters the middle cranial fossa through the superior orbital fissure and rarely through the meningo-orbital foramen. All skulls, investigated in the present study, belonged to adult individuals of both sexes, conditionally grouped into three cranial series--contemporary male, medieval male, and medieval female series. The absence of foramen spinosum was established only among the medieval male and female series--in 1 (0.70%) male and in 1 (0.72%) female skull on the right side and in 3 (2.13%) female skulls on the left side. In 1 (0.72%) female skull, a small atypically located foramen spinosum was established on the right side. In all of the described cases, the intracranial meningeal grooves started from the lateral edge of the superior orbital fissure and probably reflect the ophthalmic origin of the middle meningeal artery.  相似文献   
6.
7.
A full-length cDNA encoding common bean (Phaseolus vulgaris L.) sucrose synthase (designated as Pv_BAT93 Sus), which catalyses the synthesis and cleavage of sucrose, was isolated from seeds at 15 days after pollination (DAP) by rapid amplification of cDNA ends (RACE). The full-length cDNA of Pv_BAT93 Sus had a 2,418 bp open reading frame (ORF) encoding a protein of 806 amino acid residues. Sequence comparison analysis showed that Pv_BAT93 Sus was very similar to several members of the sucrose synthase family of other plant species. Tissue expression pattern analysis showed that Pv_BAT93 Sus was expressed in leaves, flowers, stems, roots, cotyledons, and particularly during seed development. Expression studies using in situ hybridization revealed altered spatial and temporal patterns of Sus expression in the EMS mutant relative to wild-type and confirmed Sus expression in common bean developing seeds. The expression and accumulation of Sus mRNA was clearly shown in several tissues, such as the suspensor and embryo, but also in the transfer cells and endothelium. The results highlight the diverse roles that Sus might play during seed development in common bean.  相似文献   
8.
Current biodetection illumination technologies (laser, LED, tungsten lamp, etc.) are based on spot illumination with additional optics required when spatial excitation is required. Herein we describe a new approach of spatial illumination based on electroluminescence (EL) semiconductor strips available in several wavelengths, greatly simplifying the biosensor design by eliminating the need for additional optics. This work combines EL excitation with charge-coupled device (CCD) based detection (EL-CCD detector) of fluorescence for developing a simple portable detector for botulinum neurotoxin A (BoTN-A) activity analysis. A F?rster Resonance Energy Transfer (FRET) activity assay for BoTN-A was used to both characterize and optimize the EL-CCD detector. The system consists of two modules: (1) the detection module which houses the CCD camera and emission filters, and (2) the excitation and sample module, containing the EL strip, the excitation filter and the 9-well sample chip. The FRET activity assay used in this study utilized a FITC/DABCYL-SNAP-25 peptide substrate in which cleavage of the substrate by BoTN-A, or its light chain derivative (LcA), produced an increase in fluorescence emission. EL-CCD detector measured limits of detection (LODs) were similar to those measured using a standard fluorescent plate reader with valves between 0.625 and 1.25 nM (31-62 ng/ml) for LcA and 0.313 nM (45 ng/ml) for the full toxin, BoTN-A. As far as the authors are aware this is the first demonstration of phosphor-based EL strips being used for the spatial illumination/excitation of a surface, coupled with CCD for point of care detection.  相似文献   
9.
Two genotypes of common bean (Phaseolus vulgaris L.) were studied to determine the structural cause of seed abortion in this species. In the non-abortive control (wild-type, cultivar BAT93), the histological analysis revealed a classical pattern of seed development and showed coordinated differentiation of the embryo proper, suspensor, endosperm tissue and seed coat. In contrast, the ethyl methanesulfonate (EMS) mutant (cultivar BAT93) showed disruption in the normal seed development leading to embryo abortion. Aborted embryos from these degenerate seeds showed abnormalities in suspensor and cotyledons at the globular, heart, torpedo and cotyledon stages. Exploring the feasibility of incorporating the available online bioinformatics databases, we identified 22 genes revealing high homology with genes involved in Arabidopsis thaliana embryo development and expressed in common bean immature seeds. The expression patterns of these genes were confirmed by RT–PCR. All genes were highly expressed in seed tissues. To study the expression profiles of isolated genes during Phaseolus embryogenesis, six selected genes were examined by quantitative RT–PCR analysis on the developing embryos of wild-type and EMS mutant plants. All selected genes were expressed differentially at different stages of embryo development. These results could help to improve understanding of the mechanism of common bean embryogenesis.  相似文献   
10.
The use of cell‐free systems to produce recombinant proteins has grown rapidly over the past decade. In particular, cell‐free protein synthesis (CFPS) systems based on mammalian cells provide alternative methods for the production of many proteins, including those that contain disulfide bonds, glycosylation, and complex structures such as monoclonal antibodies. In the present study, we show robust production of turbo green fluorescent protein (tGFP) and streptokinase in a cell‐free system using instrumented mini‐bioreactors for highly reproducible protein production. We achieved recombinant protein production (~600 μg/ml of tGFP and 500 μg/ml streptokinase) in 2.5 hr of expression time, comparable to previously reported yields for cell‐free protein expression. Also, we demonstrate the use of two different affinity tags for product capture and compare those to a tag‐free self‐cleaving intein capture technology. The intein purification method provided a product recovery of 86%, compared with 52% for conventionally tagged proteins, while resulting in a 30% increase in total units of activity of purified recombinant streptokinase compared with conventionally tagged proteins. These promising beneficial features combined with the intein technology makes feasible the development of dose‐level production of therapeutic proteins at the point‐of‐care.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号