首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   13篇
  2021年   3篇
  2019年   1篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   10篇
  2012年   5篇
  2011年   4篇
  2010年   5篇
  2009年   5篇
  2008年   6篇
  2007年   8篇
  2006年   7篇
  2005年   9篇
  2004年   11篇
  2003年   9篇
  2002年   4篇
  2001年   12篇
  2000年   8篇
  1999年   5篇
  1998年   7篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1988年   1篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1978年   2篇
排序方式: 共有162条查询结果,搜索用时 359 毫秒
1.
A unique type of nonstochastic mitochondrial DNA (mtDNA) segregation was found in mammalian cells. In human cell hybrids isolated from the fusion of HeLa cells with 23, GM639, A549, or 293 cells, HeLa mtDNA was always lost from the hybrids, whereas both parental mtDNAs were maintained in hybrids of HeLa X 143BTK-. Similar phenomena were observed in mouse cell hybrids isolated by the fusion of cells with different mtDNA types. Types 1, 2, and 3, can be distinguished from each other by restriction fragment-length polymorphisms. The mouse cell hybrids between cells with type 1 and type 2 mtDNA always lost type 2 mtDNA, whereas the hybrids between cells with type 2 and type 3 mtDNA retained both types stably. These observations suggest that either a codominant or a dominant/recessive relationship may be present in intraspecies mitochondrial genomes of human and mouse cells. When the mitochondrial genomes in cell hybrids are codominant, stochastic segregation occurs while nonstochastic segregation occurs when they are in the dominant/recessive relationship. These concepts may help elucidate organelle heredity in animals.  相似文献   
2.
Polymorphism of animal mitochondrial DNA (mtDNA) has been shown to involve point mutations and limited length variations affecting essentially noncoding regions. In two wild mice of the European subspecies Mus mus musculus we found a mitochondrial mutant with a very large deletion in a coding region. The deletion is 5 kbp long (31% of the mitochondrial chromosome) and encompasses six tRNA genes and seven protein genes. The two mice were heteroplasmic: they contained a mixture of normal mtDNA and the deletion mutant. Although the latter is functionally defective, it represents 78%-79% of the mtDNA molecules in our preparations from each animal.   相似文献   
3.
The erythrocytes of blood clams (arcidae) are flattened, elliptical, and nucleated. They contain elliptical marginal bands (MBs) of microtubules, each physically associated with a pair of centrioles marginal bands (MBs) of microtubles, each physically associated with a pair of centrioles (Cohen, W., and I. Nemhauser, 1980, J. Cell Biol., 86:286-291). The MBs were found to be cold labile in living cells, disappearing within 1-2 h at 0 degrees C. After the cells had been rewarmed for 1-2 h, continuous MBs with associated centrioles were once again present. Time-course studies utilizing phase contrast, antitubulin immunofluorescence, and electron microscopy of cytoskeletons prepared during rewarming revealed structural evidence of centriole participation in MB reassembly. At the earliest stage of reassembly, a continuous MB was not present. Instead, relatively short and straight microtubules focused on a pointed centriolar “pole,” and none were present elsewhere in the cytoskeleton. Thin continuous MBs then formed, still pointed in the centriolar region. Subsequently, the MBs regained ellipticity, with their thickness gradually increasing but not reaching that of controls even after several hours of rewarming. At these later time points, microtubules still radiated from the centrioles and joined the MBs some distance away. In the presence of 0.1 mM colchicines, MB reassembly was arrested at the pointed stage. Electron microscopic observations indicate that pericentriolar material is involved in microtubule nucleation in this system, rather than the centriolar triplets directly. The results suggest a model in which the centrioles and associated material nucleate assembly and growth of microtubules in diverging directions around the cell periphery. Microtubules of opposite polarity would then pass each other at the end of the cell distal to the centrioles, with continued elongation eventually closing the MB ellipse behind the centriole pair.  相似文献   
4.
Lentinan, a -1,6;1,3-glucan, is tumor-specific for transplantable mouse solid-type tumors and it also stimulates the production of acute phase proteins (APPs). The APP response to lentinan is of the delayed type (DT-APR) and differs from that to lipopolysaccharide, which is acute. We found that the responses were genetically controlled in mice and that low responsiveness is dominant (Maeda et al. 1991). Using 123 segregants of crosses between SWR/J (a high responder) andMus spretus (a low responder), we analyzed the linkage between DT-APR responsiveness and the DNA polymerase chain reaction-simple sequence lenght polymorphism (PCR-SSLP) phenotype using 80 chromosome-specific microsatellite markers. We identified two loci (ltn1.1 andltn1.2) responsible for DT-APR.ltn1.1 is closely linked toD3Mit11 on chromosome 3 andltn1.2 toD11Nds9 on chromosome 11 (P<0.001). The linkage analysis also suggested thatltn1.2 is the major determinant for DT-APR. Correlation between lentinan-specific IL-6 mRNA expression (the late expression) controlled recessively and DT-APR induction suggests that theltn1 loci control some process(es) of IL-6 expression in the regulation step before NF-IL6.  相似文献   
5.
Patterns of mitochondrial DNA (mtDNA) variation were examined in 133 mole-rats constituting all four chromosomal species (2n = 52, 2n = 54, 2n = 58, and 2n = 60) of the Spalax ehrenbergi superspecies in Israel, as well as the peripheral isolates of 2n = 60. In the main range of the complex, a total of 28 mtDNA haplotypes were found in 64 mole-rats, with most haplotypes being unique to either a single chromosomal species or population. mtDNA divergence increased from low to high diploid number in a north-to-south direction in Israel. Overall levels of mtDNA diversity were unexpectedly the highest in the 2n = 60, the youngest species of the complex. The mtDNA haplotypes can be separated into two major groups, 2n = 52-54 and 2n = 58-60, and a phylogenetic analysis for each group revealed evidence of a few haplotypes not sorted by diploid number. The overall patterns of mtDNA divergence seen within and among the four chromosomal species are consistent with the parapatric mode of speciation as suggested from previous studies of allozyme and DNA hybridization. In a separate data set the patterns of mtDNA variation were examined across the main geographic range and across peripheral semi-isolates and isolates of the 2n = 60 chromosomal species. Fifteen haplotypes were found in 69 mole-rats. High levels of mtDNA diversity characterized the main range, semi-isolated, and even some desert isolated populations. The peripheral isolates contain much mtDNA diversity, including novel haplotypes.   相似文献   
6.
To develop SMXA recombinant inbred (RI) strains as more valuable genetic resources, 302 microsatellite (Mit) loci were added to the strain distribution patterns (SDP) reported previously. The improved SDP were constructed in a total of 1085 loci containing 484 Mit markers, 571 restriction landmark genomic scanning (RLGS) spot markers and 30 others. This substantially improved SDP can be freely accessed on our homepage (http://www.med.nagoya-u.ac.jp/sisetu/SDP.htm).  相似文献   
7.
8.
Summary We have developed a theory to estimate the degree of sequence divergence between related DNAs from the comparison of restriction endonuclease recognition sites. Two major improvements have been made upon a similar method reported by Upholt (1977). First, the most probable value is calculated by the collective use of all available data. This reduces intrinsic statistical error and extends the analyzable range of sequence divergence. Second, all variables are redefined so that they have strict mathematical implications. This corrects a serious error arising from the misinterpretation of the meaning of the fraction of conserved cleavage sites. With this refined method, sequence divergence between rat and mouse mitochondrial DNAs (mtDNAs) was calculated to be about 25% substitutions/nucleotide, which is in good agreement with the DNA-DNA hybridization data obtained by Jakovcic et al. (1975). It was also estimated that the three types of rat mtDNAs differ from one another by 0.3 ~1% of total base pairs. These values are 2 ~5 times smaller than those obtained with the conventional method.  相似文献   
9.
S Koike  I Ise  Y Sato  H Yonekawa  O Gotoh    A Nomoto 《Journal of virology》1992,66(12):7059-7066
Using cDNA of the human poliovirus receptor (PVR) as a probe, two types of cDNA clones of the monkey homologs were isolated from a cDNA library prepared from an African green monkey kidney cell line. Either type of cDNA clone rendered mouse L cells permissive for poliovirus infection. Homologies of the amino acid sequences deduced from these cDNA sequences with that of human PVR were 90.2 and 86.4%, respectively. These two monkey PVRs were found to be encoded in two different loci of the genome. Evolutionary analysis suggested that duplication of the PVR gene in the monkey genome had occurred after the species differentiation between humans and monkeys. The NH2-terminal immunoglobulin-like domain, domain 1, of the second monkey PVR, which lacks a putative N-glycosylation site, mediated poliovirus infection. In addition, a human PVR mutant without N-glycosylation sites in domain 1 also promoted viral infection. These results suggest that domain 1 of the monkey receptor also harbors the binding site for poliovirus and that sugar moieties possibly attached to this domain of human PVR are dispensable for the virus-receptor interaction.  相似文献   
10.
To determine the origins of laboratory mice, the restriction patterns of mitochondrial DNAs (mtDNAs) from various strains were compared with those of relevant subspecies and/or races of Mus musculus. In most strains and substrains of laboratory mice examined (50/55), the cleavage patterns were identical to those of the European subspecies M. m. domesticus. Those that varied include two sublines of NZB, the strain NZC, and the Japanese strain RR. The NZB and NZC patterns were identical to that of the European subspecies M. m. brevirostris, which itself has restriction patterns similar to M. m. domesticus. On the other hand, the RR pattern was identical to M. m. molossinus-like mice trapped in Western China and slightly different from Japanese M. m. molossinus. These findings suggest that the strains NZB and NZC stemmed from a European founder stock which differed from the ancestral stocks of other laboratory strains and that the ancestral mice of the RR strain had been transported from China to Japan. Therefore, most laboratory strains of mice are derived from the European subspecies M. m. domesticus while M. m. brevirostris and M. m. molossinus have made minor contributions. M. m. musculus does not appear to have made any contribution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号