首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
  2021年   2篇
  2018年   1篇
  2017年   1篇
  2014年   2篇
  2013年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   4篇
  2004年   4篇
  2002年   2篇
  1999年   2篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
Highlights? During cytokinesis, neighboring cells accumulate MyoII at the edges of the furrow ? MyoII nonautonomously sets the initial geometry of the daughter cell interface ? Neighboring membranes impede adherens junction (AJ) formation until a midbody forms ? Arp2/3-dependent actin accumulation in the dividing cell maintains AJ geometry  相似文献   
2.
The mechanisms underlying endosomal trafficking have been mostly dissected in yeast and mammalian tissue culture cells. Here, we review recent advances in the understanding of the role of endosomal trafficking in Drosophila epithelial cells. We focus on endosomal pathways that control cell polarization, cell growth, cell fate and epithelial cell rearrangement. We expect that mechanistic studies in mammalian cells and functional studies in invertebrates will continue to synergize to provide a comprehensive view of the role of endosomal trafficking in epithelial tissue organization and functions.  相似文献   
3.
Localization and activation of heterotrimeric G proteins have a crucial role during asymmetric cell division. The asymmetric division of the Drosophila sensory precursor cell (pl) is polarized along the antero-posterior axis by Frizzled signalling and, during this division, activation of Galphai depends on Partner of Inscuteable (Pins). We establish here that Ric-8, which belongs to a family of guanine nucleotide-exchange factors for Galphai, regulates cortical localization of the subunits Galphai and Gbeta13F. Ric-8, Galphai and Pins are not necessary for the control of the anteroposterior orientation of the mitotic spindle during pl cell division downstream of Frizzled signalling, but they are required for maintainance of the spindle within the plane of the epithelium. On the contrary, Frizzled signalling orients the spindle along the antero-posterior axis but also tilts it along the apico-basal axis. Thus, Frizzled and heterotrimeric G-protein signalling act in opposition to ensure that the spindle aligns both in the plane of the epithelium and along the tissue polarity axis.  相似文献   
4.
BACKGROUND: Generation of cell-fate diversity in Metazoan depends in part on asymmetric cell divisions in which cell-fate determinants are asymmetrically distributed in the mother cell and unequally partitioned between daughter cells. The polarization of the mother cell is a prerequisite to the unequal segregation of cell-fate determinants. In the Drosophila bristle lineage, two distinct mechanisms are known to define the axis of polarity of the pI and pIIb cells. Frizzled (Fz) signaling regulates the planar orientation of the pI division, while Inscuteable (Insc) directs the apical-basal polarity of the pIIb cell. The orientation of the asymmetric division of the pIIa cell is identical to the one of its mother cell, the pI cell, but, in contrast, is regulated by an unknown Insc- and Fz-independent mechanism. RESULTS: DE-Cadherin-Catenin complexes are shown to localize at the cell contact between the two cells born from the asymmetric division of the pI cell. The mitotic spindle of the dividing pIIa cell rotates to line up with asymmetrically localized DE-Cadherin-Catenin complexes. While a complete loss of DE-Cadherin function disrupts the apical-basal polarity of the epithelium, both a partial loss of DE-Cadherin function and expression of a dominant-negative form of DE-Cadherin affect the orientation of the pIIa division. Furthermore, expression of dominant-negative DE-Cadherin also affects the position of Partner of Inscuteable (Pins) and Bazooka, two asymmetrically localized proteins known to regulate cell polarity. These results show that asymmetrically distributed Cad regulates the orientation of asymmetric cell division. CONCLUSIONS: We describe a novel mechanism involving a specialized Cad-containing cortical region by which a daughter cell divides with the same orientation as its mother cell.  相似文献   
5.
Smooth Muscle Cells (SMC) are unique amongst all muscle cells in their capacity to modulate their phenotype. Indeed, SMCs do not terminally differentiate but instead harbour a remarkable capacity to dedifferentiate, switching between a quiescent contractile state and a highly proliferative and migratory phenotype, a quality often associated to SMC dysfunction. However, phenotypic plasticity remains poorly examined in the field of gastroenterology in particular in pathologies in which gut motor activity is impaired. Here, we assessed SMC status in biopsies of infants with chronic intestinal pseudo-obstruction (CIPO) syndrome, a life-threatening intestinal motility disorder. We showed that CIPO-SMCs harbour a decreased level of contractile markers. This phenotype is accompanied by an increase in Platelet-Derived Growth Factor Receptor-alpha (PDGFRA) expression. We showed that this modulation occurs without origin-related differences in CIPO circular and longitudinal-derived SMCs. As we characterized PDGFRA as a marker of digestive mesenchymal progenitors during embryogenesis, our results suggest a phenotypic switch of the CIPO-SMC towards an undifferentiated stage. The development of CIPO-SMC culture and the characterization of SMC phenotypic switch should enable us to design therapeutic approaches to promote SMC differentiation in CIPO.  相似文献   
6.
Monomers of amyloid-β (Aβ) protein are known to be disordered, but there is considerable controversy over the existence of residual or transient conformations that can potentially promote oligomerization and fibril formation. We employed single-molecule Förster resonance energy transfer (FRET) spectroscopy with site-specific dye labeling using an unnatural amino acid and molecular dynamics simulations to investigate conformations and dynamics of Aβ isoforms with 40 (Aβ40) and 42 residues (Aβ42). The FRET efficiency distributions of both proteins measured in phosphate-buffered saline at room temperature show a single peak with very similar FRET efficiencies, indicating there is apparently only one state. 2D FRET efficiency-donor lifetime analysis reveals, however, that there is a broad distribution of rapidly interconverting conformations. Using nanosecond fluorescence correlation spectroscopy, we measured the timescale of the fluctuations between these conformations to be ~35 ns, similar to that of disordered proteins. These results suggest that both Aβ40 and Aβ42 populate an ensemble of rapidly reconfiguring unfolded states, with no long-lived conformational state distinguishable from that of the disordered ensemble. To gain molecular-level insights into these observations, we performed molecular dynamics simulations with a force field optimized to describe disordered proteins. We find, as in experiments, that both peptides populate configurations consistent with random polymer chains, with the vast majority of conformations lacking significant secondary structure, giving rise to very similar ensemble-averaged FRET efficiencies.  相似文献   
7.
8.
Cell fate diversity is generated in part by the unequal segregation of cell-fate determinants during asymmetric cell division. In the Drosophila bristle lineage, the sensory organ precursor (pI) cell is polarized along the anteroposterior (AP) axis by Frizzled (Fz) receptor signaling. We show here that Fz localizes at the posterior apical cortex of the pI cell prior to mitosis, whereas Strabismus (Stbm) and Prickle (Pk), which are also required for AP polarization of the pI cell, co-localize at the anterior apical cortex. Thus, asymmetric localization of Fz, Stbm and Pk define two opposite cortical domains prior to mitosis of the pI cell. At mitosis, Stbm forms an anterior crescent that overlaps with the distribution of Partner of Inscuteable (Pins) and Discs-large (Dlg), two components of the anterior Dlg-Pins-Galphai complex that regulates the localization of cell-fate determinants. At prophase, Stbm promotes the anterior localization of Pins. By contrast, Dishevelled (Dsh) acts antagonistically to Stbm by excluding Pins from the posterior cortex. We propose that the Stbm-dependent recruitment of Pins at the anterior cortex of the pI cell is a novel read-out of planar cell polarity.  相似文献   
9.
Asymmetric distribution of fate determinants is a fundamental mechanism underlying the acquisition of distinct cell fates during asymmetric division. In Drosophila neuroblasts, the apical DmPar6/DaPKC complex inhibits Lethal giant larvae (Lgl) to promote the basal localization of fate determinants. In contrast, in the sensory precursor (pI) cells that divide asymmetrically with a planar polarity, Lgl inhibits Notch signaling in the anterior pI daughter cell, pIIb, by a yet-unknown mechanism. We show here that Lgl promotes the cortical recruitment of Partner of Numb (Pon) and regulates the asymmetric distribution of the fate determinants Numb and Neuralized during the pI cell division. Analysis of Pon-GFP and Histone2B-mRFP distribution in two-color movies confirmed that Lgl regulates Pon localization. Moreover, posterior DaPKC restricts Lgl function to the anterior cortex at mitosis. Thus, Lgl functions similarly in neuroblasts and in pI cells. We also show that Lgl promotes the acquisition of the pIIb cell fate by inhibiting the plasma membrane localization of Sanpodo and thereby preventing the activation of Notch signaling in the anterior pI daughter cell. Thus, Lgl regulates cell fate by controlling Pon cortical localization, asymmetric localization of Numb and Neuralized, and plasma-membrane localization of Sandopo.  相似文献   
10.
The generation of daughter cells of different fate and size depends on the orientation, positioning and morphology of the mitotic spindle. In both C. elegans and Drosophila, heterotrimeric G proteins have emerged as central and conserved regulators of this process. Although the same molecular players are involved in worms and flies, there are clear differences in the mechanisms used. Interestingly, recent work in mammalian cells suggests that heterotrimeric G proteins may control spindle positioning in higher organisms during symmetric and asymmetric cell divisions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号