首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   15篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   5篇
  2013年   3篇
  2012年   6篇
  2011年   6篇
  2010年   4篇
  2009年   3篇
  2008年   6篇
  2007年   4篇
  2006年   3篇
  2005年   5篇
  2004年   6篇
  2003年   5篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   5篇
  1991年   6篇
  1990年   4篇
  1989年   1篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   6篇
  1984年   3篇
  1983年   6篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   2篇
  1976年   3篇
  1975年   2篇
  1972年   1篇
  1971年   1篇
  1965年   2篇
  1964年   1篇
  1960年   2篇
  1953年   1篇
排序方式: 共有155条查询结果,搜索用时 15 毫秒
1.
2.
Summary Lymphocytes from patients with transitional cell carcinoma (TCC) of the urinary bladder are more cytotoxic to bladder tumor cells than to a variety of control cells. This disease-related cytotoxicity has previously been shown to involve several mechanisms and different types of effector cells. To analyze further the nature of the effector cells operative in this system, peripheral blood lymphocytes from eight TCC patients were stimulated in vitro with TCC extract and cultured in the presence of interleukin 2 and allogeneic feeder cells. When tested for cytotoxicity in vitro on a target cell panel including both adherent and nonadherent cell lines, the lymphocytes killed a broad spectrum of targets in a major histocompatibility complex (MHC)-unrestricted fashion. When cloned by limiting dilution, clones were obtained which displayed a more restricted pattern of target cell killing. Some of the clones were highly but not exclusively selective for TCC-derived target cells. Phenotypically, these cells resembled mature T cells of CTL-type (CD8+/CD4). They also expressed the CD3/5 T cell antigen receptor complex but target cell killing was not MHC-restricted. The results of various inhibition experiments suggested that the CD3/TCR complex was involved in the cytotoxicity exhibited by these effector cells. However, its precise role in target cell recognition and the identification of the tumor cell structures recognised by the effector cells require further studies.  相似文献   
3.
Plasma membrane vesicles with H+-ATPase activity were purified from 8-day-old oat ( Avena sativa L. cv. Brighton) roots using an aqueous polymer two-phase system. Of several detergents tested, only lysophosphatidylcholine solubilized the H+-ATPase in an active form. Solubilization of the H+-ATPase with lysophosphatidylcholine was possible in the absence of glycerol, but the ATPase activity decreased about 4–5 times as rapidly in the absence as in the presence of 30% (w/v) glycerol. The solubilized enzyme was further stabilized by ATP and protons. Addition of 1 m M ATP to the plasma membranes halted inactivation of the H+-ATPase. Even in the absence of polyol compounds and ATP, the enzyme was stable for hours at relatively low pH with an optimum around pH 6.7 at room temperature. The curve for the stability of soluble H+-ATPase as a function of pH closely resembles the pH curve for the activity of the H+-ATPase. This suggests that binding of protons to transport sites may stabilize the soluble H+-ATPase in an enzymatically active form.  相似文献   
4.
Plasma membrane vesicles were purified from 8-day-old oat ( Avena sativa L. cv. Brighton) roots in an aqueous polymer two-phase system. The plasma membranes possessed high specific ATPase activity [ca 4 μmol P1 (mg protein)−1 min−1 at 37°C]. Addition of lysophosphatidylcholine (lyso-PC) produced a 2–3 fold activation of the plasma membrane ATPase, an effect due both to exposure of latent ATP binding sites and to a true activation of the enzyme. Lipid activation increased the affinity for ATP and caused a shift of the pH optimum of the H+ -ATPase activity to 6.75 as compared to pH 6.45 for the negative H+-ATPase. Activation was dependent on the chain length of the acyl group of the lyso-PC, with maximal activition obtained by palmitoyl lyso-PC. Free fatty acids also activated the membrane-bound H+-ATPase. This activation was also dependent on chain length and to the degree of unsaturation, with linolenic and arachidonic acid as the most efficient fatty acids. Exogenously added PC was hydrolyzed to lyso-PC and free fatty acids by an enzyme in the plasma membrane preparation, presumably of the phospholipase A type. Both lyso-PC and free fatty acids are products of phospholipase A2 (EC 3.1.1.4) action, and addition of phospholipase A2 from animal sources increased the H+-ATPase activity within seconds. Interaction with lipids and fatty acids could thus be part of the regulatory system for H+-ATPase activity in vivo, and the endogenous phospholipase may be involved in the regulation of the H+-ATPase activity in the plasma membranne.  相似文献   
5.
Two proteins of Mr = 58,000 and 59,000, respectively, were purified from 4 M guanidinium chloride extracts of articular cartilage by dissociative CsCl-density gradient centrifugation followed by gel chromatography on Sephadex G-200 and ion exchange chromatography on DEAE-cellulose. The two proteins differ in ionic properties and only the one with Mr = 59,000 bound to the ion exchanger. Although the two proteins showed dissimilar peptide patterns after proteolysis, their amino acid composition was similar, with very high contents of leucine and aspartic acid/asparagine. The two proteins showed no cross-reactivity in radioimmunoassays. By use of these assays, the proteins were demonstrated in extracts of most connective tissues, with high contents of about 0.1% of tissue wet weight determined in several types of cartilage. Among the non-cartilage connective tissues, tendon and sclera had the highest contents of the proteins, i.e. about 0.1% of the tissue wet weight. Bone extracts, on the other hand, contained insignificant amounts of the proteins. Only the Mr = 59,000 protein was detected in serum, its concentration being about 33 micrograms/l. Both proteins were shown to be localized in the extracellular matrix of cartilage, predominantly in the territorial matrix, by using indirect immunofluorescence.  相似文献   
6.
Intermediary gel immunoelectrophoresis was used to show that purified aggregating cartilage proteoglycans from 2-year-old steers contain two distinct populations of molecules and that only one of these is immunologically related to non-aggregating cartilage proteoglycans. The two types of aggregating proteoglycans were purified by density-gradient centrifugation in 3.5M-CsCl/4M-guanidinium chloride and separated by zonal rate centrifugation in sucrose gradients. The higher-buoyant-density faster-sedimenting proteoglycan represented 43% of the proteoglycans in the extract. It had a weight-average Mr of 3.5 X 10(6), did not contain a well-defined keratan sulphate-rich region, had a quantitatively dominant chondroitin sulphate-rich region and contained 5.9% protein and 23% hexosamine. The lower-buoyant-density, more slowly sedimenting, proteoglycan represented 15% of the proteoglycans in the extract. It had a weight-average Mr of 1.3 X 10(6), contained both the keratan sulphate-rich and the chondroitin sulphate-rich regions and contained 7.3% protein and 23% hexosamine. Each of the proteoglycan preparations showed only one band on agarose/polyacrylamide-gel electrophoresis. The larger proteoglycan had a lower mobility than the smaller. The distribution of chondroitin sulphate chains along the chondroitin sulphate-rich region was similar for the two types of proteoglycans. The somewhat larger chondroitin sulphate chains of the larger proteoglycan could not alone account for the larger size of the proteoglycan. Peptide patterns after trypsin digestion of the proteoglycans showed great similarities, although the presence of a few peptides not shared by both populations indicates that the core proteins are partially different.  相似文献   
7.
The characteristics of cell-associated proteoglycans were studied and compared with those from the medium in suspension cultures of calf articular-cartilage chondrocytes. By including hyaluronic acid or proteoglycan in the medium during [35S]sulphate labelling the proportion of cell-surface-associated proteoglycans could be decreased from 34% to about 15% of all incorporated label. A pulse-chase experiment indicated that this decrease was probably due to blocking of the reassociation with the cells of proteoglycans exported to the medium. Three peaks of [35S]sulphate-labelled proteoglycans from cell extracts and two from the medium were isolated by gel chromatography on Sephacryl S-500. These were characterized by agarose/polyacrylamide-gel electrophoresis, by SDS/polyacrylamide-gel electrophoresis of core proteins, by glycosaminoglycan composition and chain size as well as by distribution of glycosaminoglycans in proteolytic fragments. The results showed that associated with the cells were (a) large proteoglycans, typical for cartilage, apparently bound to hyaluronic acid at the cell surface, (b) an intermediate-size proteoglycan with chondroitin sulphate side chains (this proteoglycan, which had a large core protein, was only found associated with the cells and is apparently not related to the large proteoglycans), (c) a small proteoglycan with dermatan sulphate side chains with a low degree of epimerization, and (d) a somewhat smaller proteoglycan containing heparan sulphate side chains. The medium contained a large aggregating proteoglycan of similar nature to the large cell-associated proteoglycan and small proteoglycans with dermatan sulphate side chains with a higher degree of epimerization than those of the cells, i.e. containing some 20% iduronic acid.  相似文献   
8.
A non-collagenous quantitatively prominent protein was purified from guanidine hydrochloride extracts of bovine tracheal cartilage. Purification was achieved by cesium chloride density gradient centrifugation and chromatography on DEAE-cellulose at pH 7.0 followed by CM-cellulose at pH 5.0. The protein has a marked tendency to form aggregates in denaturing solutions of high ionic strength, e.g. 6 M guanidine hydrochloride. The purified protein contains a single, Mr 36,000 polypeptide chain, with a particularly high content of leucine. It contains about 1% carbohydrate with a remarkable absence of hexosamines and sialic acid, whereas xylose, galactose, mannose, and fucose were identified in the preparation. The protein was identified in extracts of cartilage and bone and could be shown to be primarily extracellular. Tendon may contain trace amounts of the protein, whereas extracts of several other tissues showed no immunoreactivity in enzyme-linked immunosorbent assay.  相似文献   
9.

Objective

Parathyroid hormone (PTH) and vitamin D are the most important hormones regulating calcium metabolism. In primary hyperparathyroidism (PHPT) excessive amounts of PTH are produced. Bone turnover is enhanced, leading to reduced bone mineral density and elevated levels of serum calcium. The aim of this study was to investigate relations between serum levels of 25-hydroxyvitamin D (25(OH)D), 1,25-dihydroxyvitamin D (1,25(OH)2D) and bone mineral density, as well as known genetic polymorphisms in the vitamin D receptor and enzymes metabolising vitamin D in patients with PHPT.

Design/Subjects

We conducted a cross-sectional study of 52 patients with PHPT.

Results

Mean level of 25(OH)D was 58.2 nmol/L and median 1,25(OH)2D level was 157 pmol/L. Among our patients with PHPT 36.5% had 25(OH)D levels below 50 nmol/L. Serum 1,25(OH)2D was inversely correlated to bone mineral density in distal radius (p = 0.002), but not to bone mineral density at lumbar spine or femoral neck. The vitamin D receptor polymorphism Apa1 (rs7975232) was associated with bone mineral density in the lumbar spine.

Conclusions

The results suggest that PHPT patients with high blood concentrations of 1,25(OH)2D may have the most deleterious skeletal effects. Randomized, prospective studies are necessary to elucidate whether vitamin D supplementation additionally increases serum 1,25(OH)2D and possibly enhances the adverse effects on the skeleton in patients with PHPT.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号