首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   390篇
  免费   17篇
  2022年   2篇
  2021年   4篇
  2020年   4篇
  2019年   4篇
  2018年   9篇
  2017年   6篇
  2016年   10篇
  2015年   12篇
  2014年   12篇
  2013年   35篇
  2012年   37篇
  2011年   20篇
  2010年   10篇
  2009年   13篇
  2008年   22篇
  2007年   26篇
  2006年   21篇
  2005年   29篇
  2004年   26篇
  2003年   23篇
  2002年   21篇
  2001年   4篇
  2000年   8篇
  1999年   6篇
  1998年   9篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1988年   3篇
  1987年   2篇
  1984年   2篇
  1982年   3篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1967年   1篇
  1960年   1篇
排序方式: 共有407条查询结果,搜索用时 15 毫秒
1.
Cd induced changes of Zn and Cd distribution in the liver and kidneys were studied in relation to Cd metallothionein (MT) synthesis. Wistar male rats were given CdCl2 by sc injection of .8, 1.5, and 3.0 mg Cd/kg three times a week for three weeks. Cd levels of liver and kidneys increased with the increment of Cd dosage and 80–90% of Cd was found in the cytosol. The MT fractions contained 80–89% cytosolic Cd in the liver and 55–75% Cd in the kidneys. Zn concentrations in the liver increased following Cd administration, But Zn in the kidneys showed only slight increase. There was a distinct decrease of Cu concentration in the liver of the 3.0 mg group. In contrast, Cu concentrations in the kidneys increased about three times in the .8 and 1.5 mg Cd groups, but Cu in the 3.0 mg group showed only 1.5 times increase. The changes of these metal concentrations were observed mainly in the cytosol. Non-MT-Cd in the kidneys was maximum in the 1.5 mg group, but the 3.0 mg group showed significant decrease. In parallel with this decrease of Cd, Cu and Zn in the kidneys showed similar decrease. When the kidneys are injured, Zn and Cu appear to leak from this organ.  相似文献   
2.
Cos 7 cells transfected with human atrial natriuretic polypeptide (hANP) gene with SV40 enhancer and replication origin sequences expressed hANP gene. The expressed RNA was indistinguishable from native hANP mRNA and the transcribed protein seemed to be properly processed to alpha-hANP and beta-hANP. This system provides a useful approach to investigate the processing of hANPs and the structure-function relationship of amino acid sequences of hANPs.  相似文献   
3.
Summary Neurons containing luteinizing hormone-releasing hormone (LHRH) are first detected in newt embryos (Cynops pyrrhogaster) in the olfactory epithelium and ventromedial portion of the olfactory nerve, after which they sequentially appear in the intracerebral course of the terminal nerve at prometamorphosis, and in the septo-preoptic area at postmetamorphosis. In adults, however, LHRH-immunoreactive cells are rarely seen in the nasal region, and their distribution shifts into the brain, suggesting their migration. In order to ascertain the origin and possible migration route of these neurons in newt larvae, the effect of unilateral or bilateral olfactory placodectomy on the LHRH neuronal system has been studied. Removal of the olfactory placode results in the absence of LHRH-immunoreactive cells in the nasal and brain regions of the operated side, whereas the subsequent growth and the LHRH-immunoreactive cellular distribution in the contralateral side are identical to those of normal larvae. Following bilateral placodectomy, no LHRH immunoreactivity is detected on either side of the olfactory-brain axis. These results suggest that LHRH neurons of the newt, Cynops pyrrhogaster, originate in the olfactory placode and then migrate into the brain during embryonic development.  相似文献   
4.
Twenty-four male rats of the Wistar strain divided into four groups were injected sc with a dose of 0.8, 1.5, and 3.0 mg Cd/kg body wt as CdCl2 in saline, and saline alone to the control rats, three times a week for 3 wk. Cadmium levels of whole kidney homogenate, supernatant (cytosol), precipitate, and metallothionein (MT) fraction were measured. Histological changes of the renal proximal tubules were investigated by optical and electron microscopy. In the kidneys, Cd levels were increased with the increment of Cd dosage; 80–90% of Cd was contained in cytosol, and 55–75% was in MT fraction. Non-MT-Cd reached a maximum in the 1.5 mg Cd group, whereas that of the 3.0 mg Cd group showed some decline. With increasing Cd doses, the size of nuclei and nucleoli in the cells of proximal tubule showed significant enlargement and also an increase in the number of nucleoli on light microscopy. At higher doses, chromatin condensation of the tubular nuclei and vacuolar degeneration of the tubular cells were evident. On electron microscopy, perichromatin granules of the proximal tubular nuclei were increased in number, especially in the rats of Cd 0.8 mg and 1.5 mg/kg groups. As the Cd doses increased, ring-shaped nucleoli were increased in number and nucleolar segregation was observed more clearly. Moreover, in the 3.0 mg/kg Cd group, nuclear indentation and nucleoli containing compact dense granules were observed. In the cytoplasm, there was an increase of lysosomes, myelin bodies, ring-shaped mitochondria, and vesiculation; ultimate changes were degeneration and cell necrosis. The injured cells were heterogenously distributed in each nephron and this heterogeneity was attributed in the difference in Cd content and cell cycle in each cell of the nephron.  相似文献   
5.
Expression of β-actin and β-tubulin mRNA was examined in androgen-sensitive motoneurons of the spinal nucleus of the bulbocavernosus (SNB) in adult male rats by in situ hybridization histochemistry using complementary DNAs encoding chick β-actin and mouse β-tubulin, respectively. Both hybridizable β-actin and βtubulin mRNAs were localized in the somata and proximal dendrites of SNB motoneurons. Removal of androgen by castration significantly reduced the expression levels of both β-actin and β-tubulin mRNAs in the SNB motoneurons, whereas the changes were prevented by testosterone treatment. In contrast, castration or testosterone treatment induced little or no change in the expression levels of these mRNAs in the much less androgen-sensitive motoneurons of the retrodorsolateral nucleus (RDLN). These results suggest that androgen regulates the expression of β-actin and β-tubulin genes in the SNB motoneurons and may provide evidence for the molecular mechanisms of hormonally induced neuronal plasticity in the SNB motoneurons.  相似文献   
6.
Isozymes of pyridoxine (pyridoxamine)-5′-phosphate oxidase (EC 1.4.3.5) were isolated from the extract of wheat seedlings by column chromatographies. From DEAE-Sephadex A-50, two fractions having pyridoxine-5′-phosphate oxidase activity were separated by eluting with ~0.075 and ~0.125 m phosphate buffers (pH 8.0). These fractions were further fractionated on a Blue-Sepharose CL-6B column, from which again two activities were eluted by 1.0 m KCl solution. One fraction, designated as E-I, used only pyridoxine 5′-phosphate as substrate, whereas the other, designated as E-II, oxidized not only pyridoxine 5′-phosphate but also pyridoxamine 5′-phosphate with approximately equal rates. The mobility on polyacrylamide disc gel electrophoresis and the substrate specificity of these two fractions were different. Therefore, they were concluded to be isozymes.  相似文献   
7.
Okadaic acid blocks the cell cycle at early mitosis in suspensioncultures of Nicotiana plumbaginifolia. Nuclear DNA content wasmeasured in treated cells by propidium iodide staining, fluorescencemicroscopy and quantitative analysis of the video image. NuclearDNA levels in inhibited populations showed that cells continuedto progress from G1 phase through S phase and accumulated inG2 phase. Arrested cells in 12 µM okadaic acid had a condensedchromatin configuration and persisting nucleolus similar tonormal early prophase. Progress to early prophase was also indicatedby development of the preprophase band (PPB) of microtubules.PPB microtubules disassembled in 95% of the inhibited cellswith the same timing as in control cells, although the treatedcells did not progress to prometaphase mitotic spindle assemblythat normally precedes PPB breakdown, therefore okadaic acidcan disrupt the normal dependence of PPB disassembly on prometaphasenuclear events and indicates that the normal signal for disassemblymay be an increase in phosphorylation of PPB associated proteins.Okadaic acid at 12 µM caused increased levels of phosphorylatedproteins, in particular those of 108 kDa, 49 kDa, 36 kDa, 33kDa, 31 kDa, but more complex effects on some phosphoproteinswere indicated by reductions in a phosphoprotein of 41 kDa andone of approximately 190 kDa. It is concluded that the mitoticphase of the plant cell cycle is more sensitive than precedingcycle phases to the disruption of protein phosphorylation levelsby okadaic acid and it is proposed that the inhibitor blocksdivision by interfering with essential changes in the phosphorylationstate of proteins at mitosis. This conclusion is discussed inrelation to genetical and biochemical evidence that proteinkinases and phosphatases are involved in the cell division ofplants and other eukaryotes. (Received November 26, 1991; Accepted April 20, 1992)  相似文献   
8.
β-Phenetyl alcohol and procaine hydrochloride are known to alter membrane structure. Their effects on the syntheses of tyramine oxidase and arylsulfatase were studied in Klebsiella aerogenes. β-Phenetyl alcohol inhibited the syntheses of membrane-bound tyramine oxidase and arylsulfatase, located in the periplasm, under non-repressing and derepressing conditions, but did not affect the syntheses of β-galactosidase and histidase, which are located internally. In contrast, procaine hydrochloride stimulated the synthesis of tyramine oxidase and derepressed the synthesis of arylsulfatase, but inhibited non-repressed synthesis of arylsulfatase. Thus, derepressed synthesis of cellular arylsulfatase was affected by the level of tyramine oxidase synthesis. Structural alterations in the cell membrane seem to impair the formation of active-arylsulfatase protein in the periplasmic space.  相似文献   
9.
Human immunodeficiency virus type 1 (HIV-1) replication in macaque cells is restricted mainly by antiviral cellular APOBEC3, TRIM5α/TRIM5CypA, and tetherin proteins. For basic and clinical HIV-1/AIDS studies, efforts to construct macaque-tropic HIV-1 (HIV-1mt) have been made by us and others. Although rhesus macaques are commonly and successfully used as infection models, no HIV-1 derivatives suitable for in vivo rhesus research are available to date. In this study, to obtain novel HIV-1mt clones that are resistant to major restriction factors, we altered Gag and Vpu of our best HIV-1mt clone described previously. First, by sequence- and structure-guided mutagenesis, three amino acid residues in Gag-capsid (CA) (M94L/R98S/G114Q) were found to be responsible for viral growth enhancement in a macaque cell line. Results of in vitro TRIM5α susceptibility testing of HIV-1mt carrying these substitutions correlated well with the increased viral replication potential in macaque peripheral blood mononuclear cells (PBMCs) with different TRIM5 alleles, suggesting that the three amino acids in HIV-1mt CA are involved in the interaction with TRIM5α. Second, we replaced the transmembrane domain of Vpu of this clone with the corresponding region of simian immunodeficiency virus SIVgsn166 Vpu. The resultant clone, MN4/LSDQgtu, was able to antagonize macaque but not human tetherin, and its Vpu effectively functioned during viral replication in a macaque cell line. Notably, MN4/LSDQgtu grew comparably to SIVmac239 and much better than any of our other HIV-1mt clones in rhesus macaque PBMCs. In sum, MN4/LSDQgtu is the first HIV-1 derivative that exhibits resistance to the major restriction factors in rhesus macaque cells.  相似文献   
10.
We report here that Tyrophagus similis and Tyrophagus putrescentiae (Astigmata: Acaridae) have the ability to biosynthesize linoleic acid [(9Z, 12Z)-9, 12-octadecadienoic acid] via a Δ12-desaturation step, although animals in general and vertebrates in particular appear to lack this ability. When the mites were fed on dried yeast enriched with d31-hexadecanoic acid (16:0), d27-octadecadienoic acid (18:2), produced from d31-hexadecanoic acid through elongation and desaturation reactions, was identified as a major fatty acid component of phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs) in the mites. The double bond position of d27-octadecadienoic acid (18:2) of PCs and PEs was determined to be 9 and 12, respectively by dimethyldisulfide (DMDS) derivatization. Furthermore, the GC/MS retention time of methyl 9, 12-octadecadienoate obtained from mite extracts agreed well with those of authentic linoleic acid methyl ester. It is still unclear whether the mites themselves or symbiotic microorganisms are responsible for inserting a double bond into the Δ12 position of octadecanoic acid. However, we present here the unique metabolism of fatty acids in the mites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号