首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2024年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2010年   2篇
  2006年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
4.
Question: What is the relationship between soil fertility and plant species richness in the ‘fertile islands’ occurring beneath two species of legume (Cercidium praecox and Prosopis laevigata)? Location: Tehuacán‐Cuicatlán region, central Mexico. Methods: Plant richness was measured in three micro‐environments (below canopies of C. praecox, below canopies of P. laevigata and in areas without canopies). The concentration of soil nutrients (C, N and P), C and N in the microbiota, and processes of ecosystem functioning (net C mineralization rate and N mineralization) were measured. The relationship between soil variables and plant richness were assessed with ANCOVAs. Results: Soil nutrients and species richness increases markedly under fertility islands. There were higher concentrations of C and N in the soil, faster rates of C mineralization, and higher species richness under P. laevigata canopies. The relationship between soil fertility and species richness was always positive except for total N, ammonium and net C mineralization rate under C. praecox, and for available P under P. laevigata. Conclusions: The sign of the relationship between soil fertility and species richness varies according to the nutrient and the micro‐environment. Positive relationships could result from between species complementarity and facilitation. Negative relationships could be explained by a specific limitation threshold for some soil resources (P and N for plants and C for the soil microbiota) which eliminate the possibilities of between species complementarity and facilitation above that threshold. As in all observational studies, these relationships should be considered only correlational.  相似文献   
5.
Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function.  相似文献   
6.
The objective of this study was to evaluate whether lead (Pb) and arsenic (As) levels in biological fluids were associated to the body composition in a group of reproductive-age women. Voluntary childbearing-age women (n = 107) were divided into three groups according to their body mass index (BMI: weight/height2 (kg/m2): low weight (BMI<18.5 kg/m2), normal $ \left( {{\text{BMI}} > 19\kern1.5pt<\kern1.5pt24.9\,{{\text{kg}} \mathord{\left/{\vphantom {{\text{kg}} {{{\text{m}}^{\text{2}}}}}} \right.} {{{\text{m}}^{\text{2}}}}}} \right) $ \left( {{\text{BMI}} > 19\kern1.5pt<\kern1.5pt24.9\,{{\text{kg}} \mathord{\left/{\vphantom {{\text{kg}} {{{\text{m}}^{\text{2}}}}}} \right.} {{{\text{m}}^{\text{2}}}}}} \right) , and overweight (BMI>25 kg/m2). Body composition and fat mass percentage were determined by the isotopic dilution method utilizing deuterated water. Blood lead concentrations were determined by graphite furnace atomic absorption spectrometry and urinary arsenic (AsU) concentrations by inductively coupled plasma mass spectrometry. The type and frequency of food consumption and lifestyle-related factors were also registered. Most women had $ {\text{PbB}}\,{\text{levels}} > 2\kern1.5pt<\kern1.5pt10\,{\mu{{\text{ g}}} \mathord{\left/{\vphantom {\mu{{\text{ g}}} {\text{dL}}}} \right.} {\text{dL}}} $ {\text{PbB}}\,{\text{levels}} > 2\kern1.5pt<\kern1.5pt10\,{\mu{{\text{ g}}} \mathord{\left/{\vphantom {\mu{{\text{ g}}} {\text{dL}}}} \right.} {\text{dL}}} , and only 2.6% had AsU concentrations above 50 μg/L. The levels of these toxic elements were not found to be associated with the fat mass percentage.  相似文献   
7.
Phosphorus (P) is an essential element of the biosphere, both as a constituent of living organisms and as a regulator of biological processes. The Cuatro Ciénegas Basin in the central Chihuahuan Desert of Mexico is characterized by extreme P oligotrophy. The aim of this study was to quantify P distribution in soil P fractions, P sorption capacity, and P in microbial biomass in a desert scrub and grassland soil system in the Churince area of the Cuatro Ciénegas Basin over summer and winter seasons. Our objective, as part of an exploration of ecosystem functioning, was to ascertain the relationship between soil P fractions and P in microbial biomass. Our results demonstrate a scarcity of P, mainly in grassland, and also a higher P sorption capacity in grassland soil than in desert scrub. Desert scrub soil retained more P (228 ± 5 μg g?1 dry soil) than grassland soil (87 ± 10 μg g?1 dry soil), mainly in inorganic forms, but grassland soil retained more P in accessible organic forms. We suggest that biotic controls regulated by access to water shape the dynamics of soil P availability in the Churince grassland-desert scrub system.  相似文献   
8.
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号