首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   3篇
  国内免费   12篇
  2023年   2篇
  2022年   3篇
  2021年   15篇
  2020年   6篇
  2019年   9篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   8篇
  2014年   11篇
  2013年   21篇
  2012年   17篇
  2011年   16篇
  2010年   6篇
  2009年   4篇
  2008年   8篇
  2007年   10篇
  2006年   2篇
  2005年   7篇
  2004年   1篇
  2003年   4篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
排序方式: 共有168条查询结果,搜索用时 15 毫秒
1.
Ba  Limin  Wang  Zhenbao  Liu  William J  Wu  Dongxun  Xiang  Wangzhen  Qi  Peng  Dong  Chunna  Hu  Yanxin  Lu  Ping  Xiao  Jin  Yu  Changyuan 《中国科学:生命科学英文版》2020,63(10):1604-1607
正Dear Editor,Swine major histocompatibility complex (MHC) is a highly polymorphic gene in pigs and is also called swine leukocyte antigen (SLA)(Fan et al., 2018). SLA is divided into three major categories, SLA Ⅰ (SLA-1,-2,-3), SLA Ⅱ, and SLA Ⅲ(Smith et al., 2005). SLA Ⅰ plays an important role in cellular immunity which can eliminate viruses and other foreign  相似文献   
2.

Background

Protein-protein interactions (PPIs) play a key role in understanding the mechanisms of cellular processes. The availability of interactome data has catalyzed the development of computational approaches to elucidate functional behaviors of proteins on a system level. Gene Ontology (GO) and its annotations are a significant resource for functional characterization of proteins. Because of wide coverage, GO data have often been adopted as a benchmark for protein function prediction on the genomic scale.

Results

We propose a computational approach, called M-Finder, for functional association pattern mining. This method employs semantic analytics to integrate the genome-wide PPIs with GO data. We also introduce an interactive web application tool that visualizes a functional association network linked to a protein specified by a user. The proposed approach comprises two major components. First, the PPIs that have been generated by high-throughput methods are weighted in terms of their functional consistency using GO and its annotations. We assess two advanced semantic similarity metrics which quantify the functional association level of each interacting protein pair. We demonstrate that these measures outperform the other existing methods by evaluating their agreement to other biological features, such as sequence similarity, the presence of common Pfam domains, and core PPIs. Second, the information flow-based algorithm is employed to discover a set of proteins functionally associated with the protein in a query and their links efficiently. This algorithm reconstructs a functional association network of the query protein. The output network size can be flexibly determined by parameters.

Conclusions

M-Finder provides a useful framework to investigate functional association patterns with any protein. This software will also allow users to perform further systematic analysis of a set of proteins for any specific function. It is available online at http://bionet.ecs.baylor.edu/mfinder
  相似文献   
3.
Rabbit hemorrhagic disease, first described in China in 1984, causes hemorrhagic necrosis of the liver. Its etiological agent, rabbit hemorrhagic disease virus (RHDV), belongs to the Lagovirus genus in the family Caliciviridae. The detailed molecular structure of any lagovirus capsid has yet to be determined. Here, we report a cryo-electron microscopic (cryoEM) reconstruction of wild-type RHDV at 6.5 Å resolution and the crystal structures of the shell (S) and protruding (P) domains of its major capsid protein, VP60, each at 2.0 Å resolution. From these data we built a complete atomic model of the RHDV capsid. VP60 has a conserved S domain and a specific P2 sub-domain that differs from those found in other caliciviruses. As seen in the shell portion of the RHDV cryoEM map, which was resolved to ∼5.5 Å, the N-terminal arm domain of VP60 folds back onto its cognate S domain. Sequence alignments of VP60 from six groups of RHDV isolates revealed seven regions of high variation that could be mapped onto the surface of the P2 sub-domain and suggested three putative pockets might be responsible for binding to histo-blood group antigens. A flexible loop in one of these regions was shown to interact with rabbit tissue cells and contains an important epitope for anti-RHDV antibody production. Our study provides a reliable, pseudo-atomic model of a Lagovirus and suggests a new candidate for an efficient vaccine that can be used to protect rabbits from RHDV infection.  相似文献   
4.
5.
Achieving a prolonged neuroprotective state following transient ischemic attacks (TIAs) is likely to effectively reduce the brain damage and neurological dysfunction associated with recurrent stroke. HPC is a phenomenon in which advanced exposure to mild hypoxia reduces the stroke volume produced by a subsequent TIA. However, this neuroprotection is not long-lasting, with the effects reaching a peak after 3 days. Therefore, in this study, we investigated the use of multiple episodes of hypoxic exposure at different time intervals to induce longer-term protection in a mouse stroke model. C57BL/6 mice were subjected to different hypoxic preconditioning protocols: a single episode of HPC or five identical episodes at intervals of 3 days (E3d HPC) or 6 days (E6d HPC). Three days after the last hypoxic exposure, temporary middle cerebral artery occlusion (MCAO) was induced. The effects of these HPC protocols on hypoxia-inducible factor (HIF) regulated gene mRNA expression were measured by quantitative PCR. Changes in extracellular adenosine concentrations, known to exert neuroprotective effects, were also measured using in vivo microdialysis and high pressure liquid chromatography (HPLC). Neuroprotection was provided by E6d HPC but not E3d HPC. HIF-regulated target gene expression increased significantly following all HPC protocols. However, E3d HPC significantly decreased extracellular adenosine and reduced cerebral blood flow in the ischemic region with upregulated expression of the adenosine transporter, equilibrative nucleoside transporter 1 (ENT1). An ENT1 inhibitor, propentofylline increased the cerebral blood flow and re-established neuroprotection in E3d HPC. Adenosine receptor specific antagonists showed that adenosine mainly through A1 receptor mediates HPC induced neuroprotection. Our data indicate that cooperation of HIF-regulated genes and extracellular adenosine is necessary for HPC-induced neuroprotection.  相似文献   
6.
Lophialetidae is an extinct group of endemic Asiatic tapiroids that are widely distributed in the Eocene sediments of Asia. Schlosseria magister and Lophialetes expeditus are the most abundant species in this family. However, their dietary and ecological characteristics are largely unknown. For the first time, we reconstruct the palaeodiet and habitat of these two lophialetids using a combination of mesowear and stable carbon isotope analysis of fossil teeth excavated from the Erlian Basin, China. Mesowear analysis (n = 141) suggests that the dietary structure of S. magister and L. expeditus shifted from less to more abrasive diets from ~52 to ~42 Ma. Stable carbon isotope analysis (n = 137) suggests that the habitats of S. magister and L. expeditus became drier and/or more open through time. The dietary shifts of the two lophialetids are consistent with evident changes in habitat. The changes in the diet and habitat were probably related to global climate change during that time period. The gradual drop in global temperatures during the early–middle Eocene led to a drier and more open terrestrial ecosystem in the Erlian Basin, probably resulting in changes in floral composition of the environment inhabited by S. magister and L. expeditus. Hence, herbivores highly susceptible to vegetation modification had to develop new resource exploitation strategies to adapt to these changes. Schlosseria magister, considered to be the sister-group of L. expeditus and with a low level of ecological flexibility, was unable to adapt to the habitat changes finally becoming extinct at ~45 Ma.  相似文献   
7.
Leukemia stem cells (LSCs) have critical functions in acute leukemia (AL) pathogenesis, participating in its initiation and relapse. Thus, identifying new molecules to eradicate LSCs represents a high priority for AL management. This work identified E35, a novel Emodin derivative, which strongly inhibited growth and enhanced apoptosis of AL stem cell lines, and primary stem and progenitor cells from AL cases, while sparing normal hematopoietic cells. Furthermore, functional assays in cultured cells and animals suggested that E35 preferentially ablated primitive leukemia cell populations without impairing their normal counterparts. Moreover, molecular studies showed that E35 remarkably downregulated drug-resistant gene and dramatically inhibited the Akt/mammalian target of rapamycin signaling pathway. Notably, the in vivo anti-LSC activity of E35 was further confirmed in murine xenotransplantation models. Collectively, these findings indicate E35 constitutes a novel therapeutic candidate for AL, potentially targeting leukemia stem and progenitor cells.  相似文献   
8.
To obtain bacteria with arsenic accumulation potential that can be used to remove arsenic from contaminated waters, experiments were made to investigate the tolerance and accumulation to arsenic of an indigenous bacterium XZM002 isolated from aquifer sediments of Datong Basin, northern China. The results showed that strain XZM002 belongs to the genus Bacillus and has evolved defense mechanisms to reduce arsenic injury: the change of cellular shape from initial rod to oval and then to round with increment of arsenic toxicity. The effect of arsenate or arsenite on the bacterial growth was also investigated. Results showed that growth of the strain was inhibited under As(III) and high concentration As(V) (over 1200 μg l?1) conditions in the first 2 days and promoted under low concentration As(V) (under 400 μg l?1) condition. Its arsenic bioaccumulation potential was surveyed by monitoring the concentration changes of total arsenic and arsenic speciation in the medium and in the cytoplasm, and those of total arsenic on the membrane. Methylated arsenic species were not detected throughout the experiment. The results indicated that 11.5% of arsenic was removed from liquid medium into the bacterial cells and 9.22% of As(V) in the medium was transformed gradually to As(III) during 4 d of incubation. Approximately 80% of the total accumulated arsenic was adsorbed onto the membrane instead of into cytoplasm; and the arsenic accumulation almost approached saturation after incubation for 72 h.  相似文献   
9.
Bacillus cereus strain XZM002 isolated from high arsenic aquifer sediments of Datong Basin was applied to examine the effects of arsenate stress on antioxidant enzyme activities, lipid peroxidation levels and cell growth inhibition rate. After 2 d exposure, the cell growth inhibition rate enhanced with an increase of As(V) concentrations (0, 800, 1600 μg/l). Reactive oxygen species and glutathione contents, lipid peroxidation levels, and antioxidant enzymes (glutathione peroxidase, and other three) activities of the treated cells were significantly higher than those of the controls during 3 d exposure (p < 0.05). Besides, the levels of nine parameters reached maximum after 2 d exposure and increased significantly with increasing arsenate stress (p < 0.05). However, they returned to levels similar to those of the control on the fourth day of exposure. The results suggested that the antioxidant defense system in B. cereus strain XZM002 could protect the cells from oxidative damage induced by arsenate.  相似文献   
10.
In the brain and heart, auxiliary Kv channel-interacting proteins (KChIPs) co-assemble with pore-forming Kv4 α-subunits to form a native K+ channel complex and regulate the expression and gating properties of Kv4 currents. Among the KChIP1–4 members, KChIP4a exhibits a unique N terminus that is known to suppress Kv4 function, but the underlying mechanism of Kv4 inhibition remains unknown. Using a combination of confocal imaging, surface biotinylation, and electrophysiological recordings, we identified a novel endoplasmic reticulum (ER) retention motif, consisting of six hydrophobic and aliphatic residues, 12–17 (LIVIVL), within the KChIP4a N-terminal KID, that functions to reduce surface expression of Kv4-KChIP complexes. This ER retention capacity is transferable and depends on its flanking location. In addition, adjacent to the ER retention motif, the residues 19–21 (VKL motif) directly promote closed-state inactivation of Kv4.3, thus leading to an inhibition of channel current. Taken together, our findings demonstrate that KChIP4a suppresses A-type Kv4 current via ER retention and enhancement of Kv4 closed-state inactivation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号