首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
  2023年   1篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
排序方式: 共有22条查询结果,搜索用时 187 毫秒
1.
MicroRNAs (miRNAs) present in tissues and biofluids are emerging as sensitive and specific safety biomarkers. MiRNAs have not been thoroughly described in M. fascicularis, an animal model used in pharmaceutical industry especially in drug safety evaluation. Here we investigated the miRNAs in M. fascicularis. For Macaca mulatta, a closely related species of M. fascicularis, 619 stem-loop precursor miRNAs (pre-miRNAs) and 914 mature miRNAs are available in miRBase version 21. Using M. mulatta miRNAs as a reference list and homology search tools, we identified 604 pre-miRNAs and 913 mature miRNAs in the genome of M. fascicularis. In order to validate the miRNAs identified by homology search we attempted to sequence miRNAs expressed in kidney cortex from M. fascicularis. MiRNAs expressed in kidney cortex may indeed be released in urine upon kidney cortex damage and be potentially used to monitor drug induced kidney injury. Hence small RNA sequencing libraries were prepared using kidney cortex tissues obtained from three naive M. fascicularis and sequenced. Analysis of sequencing data indicated that 432 out of 913 mature miRNAs were expressed in kidney cortex tissues. Assigning these 432 miRNAs to pre-miRNAs revealed that 273 were expressed from both the -5p and -3p arms of 150 pre-miRNAs and 159 miRNAs expressed from either the -5p or -3p arm of 176 pre-miRNAs. Mapping sequencing reads to pre-miRNAs also facilitated the detection of twenty-two new miRNAs. To substantiate miRNAs identified by small RNA sequencing, 313 miRNAs were examined by RT-qPCR. Expression of 262 miRNAs in kidney cortex tissues ware confirmed by TaqMan microRNA RT-qPCR assays. Analysis of kidney cortex miRNA targeted genes suggested that they play important role in kidney development and function. Data presented in this study may serve as a valuable resource to assess the renal safety biomarker potential of miRNAs in Cynomolgus monkeys.  相似文献   
2.
The bacterium capable of producing melanin pigment in the presence of L-tyrosine was isolated from crop field soil sample and identified as Klebsiella sp. GSK based on morphological, biochemical and 16S rDNA sequencing. The polymerization of this pigment occurs outside the cell wall, which has granular structure as melanin ghosts. The chemical characterization of pigment particles showed acid resistant, alkali soluble, insoluble in most of the organic solvents and water. The pigment gets bleached when subjected to the action of oxidants as well as reductants. This pigment was precipitated with FeCl3, ammoniacal silver nitrate and potassium ferricynide. The pigment showed high absorbance in the UV region and decreased absorbance when shifted towards the visible region. The melanin pigment was further charecterized by FT-IR and EPR spectroscopy. A key enzyme 4-hydroxyphenylacetic acid hydroxylase catalyzes the formation of melanin pigment by hydroxylation of L-tyrosine was detected in this bacterium. Inhibition studies with specific inhibitor kojic acid and KCN proved that melanin is synthesized by DOPA-Melanin pathway.  相似文献   
3.
A bacterial strain DGVK1 capable of using N,N-dimethylformamide (DMF) as sole source of carbon and nitrogen was isolated from the soil samples collected from the coalmine leftovers. The molecular phylogram generated using the complete sequence of 16S rDNA of the strain DGVK1 showed close links to the bacteria grouped under Brucellaceae family that belongs to alphaproteobacteria class. Specifically, the 16S rDNA sequence of strain DGVK1 has shown 97% similarity to Ochrobactrum anthropi LMG 3331 (D12794). This bacterium has also shown impressive growth on dimethylamine, methylamine, formaldehyde and formate that are considered to be the prominent catabolic intermediates of DMF. DMF degradation has led to the accumulation of ammonia and dimethylamine contributing to the increase of pH of the medium. The DMF-grown resting cells of Ochrobactrum sp. DGVK1 have also contributed for the release of ammonia when resting cell suspension was added to phosphate buffer containing DMF. Similar experiments done with the glucose-grown cultures have not produced ammonia and thus indicating the inducible nature of DMF-degrading enzymes in Ochrobactrum sp. DGVK1. Further, dimethylformamidase, dimethylamine dehydrogenase and methylamine dehydrogenase, the key enzymes involved in the degradation of DMF, were assayed, and the activities of these enzymes were found only in DMF-grown cultures further confirming the inducible nature of the DMF degradation. Based on these results, DMF degradation pathway found in Ochrobactrum sp. DGVK1 has been proposed.  相似文献   
4.
Stenotrophomonas sp. RMSK capable of degrading acenaphthylene as a sole source of carbon and energy was isolated from coal sample. Metabolites produced were analyzed and characterized by TLC, HPLC and mass spectrometry. Identification of naphthalene-1,8-dicarboxylic acid, 1-naphthoic acid, 1,2-dihydroxynaphthalene, salicylate and detection of key enzymes namely 1,2-dihydroxynaphthalene dioxygenase, salicylaldehyde dehydrogenase and catechol-1,2-dioxygenase in the cell free extract suggest that acenaphthylene metabolized via 1,2-dihydroxynaphthalene, salicylate and catechol. The terminal metabolite, catechol was then metabolized by catechol-1,2-dioxygenase to cis,cis-muconic acid, ultimately forming TCA cycle intermediates. Based on these studies, the proposed metabolic pathway in strain RMSK is, acenaphthylene → naphthalene-1,8-dicarboxylic acid → 1-naphthoic acid → 1,2-dihydroxynaphthalene → salicylic acid → catechol → cis,cis-muconic acid.  相似文献   
5.
A halophilic and alkali-tolerant Chromohalobacter sp. TPSV 101 with an ability to produce extracellular halophilic, alkali-tolerant and moderately thermostable xylanase was isolated from solar salterns. Identification of the bacterium was done based upon biochemical tests and 16S rRNA sequence. The culture conditions for higher xylanase production were optimized with respect to NaCl, pH, temperature, substrates and metal ions and additives. Maximum xylanase production was achieved in the medium with 20% NaCl, pH-9.0 at 40°C supplemented with 1% (w/v) sugarcane bagasse and 0.5% feather hydrolysate as carbon and nitrogen sources. Sugarcane bagasse (250 U/ml) and wheat bran (190 U/ml) were the best inducer of xylanase when used as carbon source as compared to xylan (61 U/ml). The xylanase that was partially purified by protein concentrator had a molecular mass of 15 kDa approximately. The xylanase from Chromohalobacter sp. TPSV 101 was active at pH 9.0 and required 20% NaCl for optimal xylanolytic activity and was active over a broad range of temperature 40–80°C with 65°C as optimum. The early stage hydrolysis products of sugarcane bagasse were xylose and xylobiose, after longer periods of incubation only xylose was detected.  相似文献   
6.
7.
Summary A fungus Cladosporium cladosporioides isolated from coal sample as a decolorizing microorganism. It decolorized five different azo and triphenylmethane dyes like acid blue 193, acid black 210, crystal violet, reactive black B(S) and reactive black BL/LPR both on solid and in liquid broth medium. Culture broth of this fungus decolorized completely 100 mg of acid blue 193 l−1 in 8 days. The extracellular enzyme of Cladosporium cladosporioides decolorized acid blue 193 on repeated addition to a total (out of 700 mg l−1) concentration of 564 mg l−1 within 168 h without significant decline in the activity, showing the resistant property of Cladosporium cladosporioides to a high concentration of the dye. The optimal temperature 40 °C, pH 5.6 and sugar concentration of 4% required for decolorization of acid blue 193. Cladosporium cladosporioides showed manganese peroxidase activity with 41 U l−1, laccase activity with 1413 U l−1 and lignin peroxidase activity was negligible after day 8 of incubation.  相似文献   
8.
A bacterial strain Paracoccus sp. SKG capable of utilizing acetonitrile as a sole source of carbon and nitrogen was isolated from the chemical waste samples. The molecular phylogram generated using the complete sequence of 16S rDNA of the strain SKG showed close links to the bacteria grouped under Brucellaceae family, that belongs to the class alphaproteobacteria. Specifically, the 16S rDNA sequence of strain SKG has shown 99% similarity to Paracoccus sp. This bacterium has also shown impressive growth on aliphatic nitriles like acetonitrile, propionitrile, acrylonitrile, valeronitrile and their corresponding amides. The nitriles degradation has led to the accumulation of ammonia and respective carboxylic acids. The acetonitrile grown cells showed the release of ammonia that contributes to the increase in pH of the medium. However, glucose grown cells failed to produce ammonia, thus indicating the inducible nature of acetonitrile degrading enzymes in Paracoccus sp. SKG. Nitrile hydratase and amidase are the two key enzymes involved in the degradation of acetonitrile. Degradation of acetonitrile in Paracoccus sp. SKG follows the bi-enzymatic pathway. Further, this strain is capable of degrading acetonitrile in the presence of other organic solvents such as methanol, ethanol and dimethylformamide. Therefore, this strain is efficiently used for the treatment of HPLC waste stream containing acetonitrile in the presence of other organic solvents.  相似文献   
9.
Bacterial aerial growth with reductive cellular division and morphological development has not been reported from single-cell bacteria. Here we show that within 1 month of incubation in vaporized p -cresol, Pseudomonas sp. KL28 form shiny, highly branched specialized aerial structures of millimetre-scale diameter. The developmental process displayed spatially and temporally distinct stages; an initial sphere stage was followed by ramification, which led to highly branched tip formation. In this morphogenesis process, the extracellular matrix (ECM) played an important role for maintaining the integrity of sectional populations and the boundaries between adjacent sectors. In addition, cellular division, lysis and migration within the aerial structures were also accompanied. During prolonged incubation, clusters of short-rod cells covered by an outer layer of thick ECM underwent reductive transformation and then replicative reductive division to form oval ultramicrocells of < 0.4 μm in diameter. In addition, the aerial structures protected these rather fragile cells from desiccation and served as a selection pressure for wrinkly, spreading cell variants. The formation of aerial structures is affected positively and negatively by a GacA regulator and RpoS, respectively, and is linked to other phenotypes. Our results demonstrate that Pseudomonas has an ecological adaptation to form mushroom-like aerial structures, which can be a tool for studying cell–cell interactions and bacterial development.  相似文献   
10.
The solvent-tolerant bacterium Enterobacter sp. VKGH12 is able to grow in toxic concentrations of n-butanol up to 1.5 % (volume in volume) as the sole carbon and energy source. Morphology changes in the cells growing on increasing concentrations of n-butanol were observed. The size of the bacteria decreased with increasing concentrations of n-butanol, also leading to an enhanced ratio between the surface and volume of the cells. This is in complete contradiction to the reaction of glucose-grown cells to which n-butanol had been added as a toxin. Similar differences were found in typical adaptive responses to toxic organic compounds, namely changes in fatty acid composition of membrane lipids and the activity of catalase. In both cases, reactions depending on the n-butanol concentrations could be observed when the toxin was added to glucose-grown cells, whereas no reaction was observable when the cells were growing in n-butanol as the sole carbon and energy source. This is another proof for the observation that there are certain differences between the adaptive strategies of cells when adapting to high concentrations of a growth substrate and those when adapting to a toxin added to growing cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号