首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   7篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1994年   1篇
  1987年   2篇
排序方式: 共有29条查询结果,搜索用时 62 毫秒
1.
In this paper, a most sensitive electrochemical biosensor for detection of prostate‐specific antigen (PSA) was designed. To reach the goal, a sandwich type electrode composed of reduced graphene oxide/ gold nanoparticles (GO/AuNPs), Anti‐Total PSA monoclonal antibody, and anti‐Free PSA antibody was assembled. The functionalized materials were thoroughly characterized by atomic force microscope spectroscopy, transmission electron microscopy, and X‐ray diffraction techniques. The electrochemical properties of each of the modification step were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The results presented that the proposed biosensor possesses high sensitivity toward total and free PSA. Furthermore, the fabricated biosensor revealed an excellent selectivity for PSA in comparison to the other tumor markers such as BHCG, Alb, CEA, CA125, and CA19‐9. The limit of detection for the proposed electrochemical biosensor was estimated to be around 0.2 and 0.07 ng/mL for total and free PSA antigen, respectively.  相似文献   
2.
A fundamental problem in biology is to understand how fertilization initiates reproductive development. Higher plant reproduction is unique because two fertilization events are required for sexual reproduction. First, a sperm must fuse with the egg to form an embryo. A second sperm must then fuse with the adjacent central cell nucleus that replicates to form an endosperm, which is the support tissue required for embryo and/or seedling development. Here, we report cloning of the Arabidopsis FERTILIZATION-INDEPENDENT ENDOSPERM (FIE) gene. The FIE protein is a homolog of the WD motif-containing Polycomb proteins from Drosophila and mammals. These proteins function as repressors of homeotic genes. A female gametophyte with a loss-of-function allele of fie undergoes replication of the central cell nucleus and initiates endosperm development without fertilization. These results suggest that the FIE Polycomb protein functions to suppress a critical aspect of early plant reproduction, namely, endosperm development, until fertilization occurs.  相似文献   
3.
Genetica - Although predicting the effects of variants near intron-exon boundaries is relatively straightforward, predicting the functional Exon Splicing Enhancers (ESEs) and the possible effects...  相似文献   
4.
Invasive aspergillosis increases in chronic immunosuppressive diseases such as cancer. There is little information about the mechanisms by which Aspergillus infection affects the immune regulation and microenvironment of cancer cells. Hence, this study was aimed at investigating the effect of invasive aspergillosis on immunosurveillance, metastasis, and prognosis of cancer in tumor-bearing mice. After implantation of mouse mammary tumor in BALB/c mice, they were infected with Aspergillus conidia intravenously. For comparison, groups of mice were experimentally infected with Aspergillus conidia or implanted with tumor cells separately. Seven days after Aspergillus infection, the serum levels of tissue inhibitor of metalloproteinase-1 (TIMP-1) were measured by ELISA, and subsequently regulatory T lymphocytes were analyzed by flow cytometry. The survival of animals and mean tumor size were then determined. Our results indicated that tumor sizes in mice increased significantly after infection with Aspergillus conidia. Moreover, invasive aspergillosis enhanced the population of regulatory lymphocytes and level of TIMP-1. This study supports the idea that massive Aspergillus infection could stimulate tumor growth and increases the possibility of a bad prognosis. As a result, treatment of Aspergillus infection could be considered an important issue for efficient cancer therapy.  相似文献   
5.
In this study, two techniques were used to compare the specific activity and total concentration of mycelial glutathione S-transferase (GST) in fungal strains isolated from natural sources. The fungi identified as Aspergillus parasiticus and Aspergillus flavus have been divided into two groups based on their ability to produce aflatoxins. Altogether 26 fungi were isolated, among which 12 were capable of producing varying levels of aflatoxin and 14 were proved to be non-toxigenic. GST specific activity in mycelial preparation was measured spectrophotometrically using 2,1-chloro-2,4-dinitrobenzene as the substrate. The results showed that the mean GST activity in toxigenic isolates was 25.06 +/- 9.8 mumol/mg protein/min which was 2.8-fold greater than that measured in non-toxigenic isolates (8.84 +/- 5.5 mumol/mg protein/min). Moreover, the GST concentration was compared in toxigenic and non-toxigenic isolates using an Enzyme Linked Immunosorbent Assay based on antigen (fungal preparation) and antibody (antibody produced against fungal GST in rabbit). The results of ELISA showed that the mean GST level in toxigenic and non-toxigenic fungi was 1.17 +/- 0.55 and 0.40 +/- 0.24, respectively. These results further confirm that the aflatoxin production in the fungal strains is correlated with GST expression and using ELISA, it is possible to discriminate aflatoxin-producing fungi from their non-toxigenic counterparts.  相似文献   
6.
Until recently, identification of gene regulatory networks controlling the development of the angiosperm female gametophyte has presented a significant challenge to the plant biology community. The angiosperm female gametophyte is fairly inaccessible because it is a highly reduced structure relative to the sporophyte and is embedded within multiple layers of the sporophytic tissue of the ovule. Moreover, although mutations affecting the female gametophyte can be readily isolated, their analysis can be difficult because most affect genes involved in basic cellular processes that are also required in the diploid sporophyte. In recent years, expression-based approaches in multiple species have begun to uncover gene sets expressed in specific female gametophyte cells as a means of identifying regulatory networks controlling cell differentiation in the female gametophyte. Here, recent efforts to identify and analyse gene expression programmes in the Arabidopsis female gametophyte are reviewed.  相似文献   
7.
8.
Although the basic plant body plan is established during embryogenesis, the molecular basis of embryonic patterning remains to be fully understood. We have identified two receptor-like kinases, RECEPTOR-LIKE PROTEIN KINASE1 (RPK1) and TOADSTOOL2 (TOAD2), required for Arabidopsis embryonic pattern formation. Genetic analysis indicates that RPK1 and TOAD2 have overlapping embryonic functions. The zygotic gene dosage of TOAD2 in an rpk1 background is of critical importance, suggesting that signaling mediated by RPK1 and TOAD2 must be above a threshold level for proper embryo development. The localization of RPK1 and TOAD2 translational fusions to GFP coupled with the analysis of cell-type-specific markers indicate that RPK1 and TOAD2 are redundantly required for both pattern formation along the radial axis and differentiation of the basal pole during early embryogenesis. We propose that RPK1 and TOAD2 receive intercellular signals and mediate intracellular responses that are necessary for embryonic pattern formation.  相似文献   
9.
10.
Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm.   总被引:11,自引:0,他引:11       下载免费PDF全文
In flowering plants, two cells are fertilized in the haploid female gametophyte. Egg and sperm nuclei fuse to form the embryo. A second sperm nucleus fuses with the central cell nucleus that replicates to generate the endosperm, which is a tissue that supports embryo development. MEDEA (MEA) encodes an Arabidopsis SET domain Polycomb protein. Inheritance of a maternal loss-of-function mea allele results in embryo abortion and prolonged endosperm production, irrespective of the genotype of the paternal allele. Thus, only the maternal wild-type MEA allele is required for proper embryo and endosperm development. To understand the molecular mechanism responsible for the parent-of-origin effects of mea mutations on seed development, we compared the expression of maternal and paternal MEA alleles in the progeny of crosses between two Arabidopsis ecotypes. Only the maternal MEA mRNA was detected in the endosperm from seeds at the torpedo stage and later. By contrast, expression of both maternal and paternal MEA alleles was observed in the embryo from seeds at the torpedo stage and later, in seedling, leaf, stem, and root. Thus, MEA is an imprinted gene that displays parent-of-origin-dependent monoallelic expression specifically in the endosperm. These results suggest that the embryo abortion observed in mutant mea seeds is due, at least in part, to a defect in endosperm function. Silencing of the paternal MEA allele in the endosperm and the phenotype of mutant mea seeds supports the parental conflict theory for the evolution of imprinting in plants and mammals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号