首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   1篇
  2019年   1篇
  2018年   1篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   7篇
  2004年   5篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1993年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   4篇
  1984年   1篇
排序方式: 共有48条查询结果,搜索用时 46 毫秒
1.
O2-evolving photosystem II (PSII) membranes from spinach have been cryogenically stabilized in the S3 state of the oxygen-evolving complex. The cryogenic trapping of the S3 state was achieved using a double-turnover illumination of dark-adapted PSII preparations maintained at 240 K. A double turnover of PSII was accomplished using the high-potential acceptor, Q400, which is the high-spin iron of the iron-quinone acceptor complex. EPR spectroscopy was the principal tool establishing the S-state composition and defining the electron-transfer events associated with a double turnover of PSII. The inflection point energy of the Mn X-ray absorption K-edge of PSII preparations poised in the S3 state is the same as for those poised in the S2 state. This is surprising in light of the loss of the multiline EPR signal upon advancing to the S3 state. This indicates that the oxidative equivalent stored within the oxygen-evolving complex (OEC) during this transition resides on another intermediate donor which must be very close to the manganese complex. An analysis of the Mn extended X-ray absorption fine structure (EXAFS) of PSII preparations poised in the S2 and S3 states indicates that a small structural rearrangement occurs during this photoinduced transition. A detailed comparison of the Mn EXAFS of these two S states with the EXAFS of four multinuclear mu-oxo-bridged manganese compounds indicates that the photosynthetic manganese site most probably consists of a pair of binuclear di-mu-oxo-bridged manganese structures. However, we cannot rule out, on the basis of the EXAFS analysis alone, a complex containing a mononuclear center and a linear trinuclear complex. The subtle differences observed between the S states are best explained by an increase in the spread of Mn-Mn distances occurring during the S2----S3 state transition. This increased disorder in the manganese distances suggests the presence of two inequivalent di-mu-oxo-bridged binuclear structures in the S3 state.  相似文献   
2.
The mechanism by which the Mn-containing oxygen evolving complex (OEC) produces oxygen from water has been of great interest for over 40 years. This review focuses on how X-ray spectroscopy has provided important information about the structure of this Mn complex and its intermediates, or S-states, in the water oxidation cycle. X-ray absorption near-edge structure spectroscopy and high-resolution Mn Kbeta X-ray emission spectroscopy experiments have identified the oxidation states of the Mn in the OEC in each of the intermediate S-states, while extended X-ray absorption fine structure experiments have shown that 2.7 A Mn-Mn di-mu-oxo and 3.3 A Mn-Mn mono-mu-oxo motifs are present in the OEC. X-ray spectroscopy has also been used to probe the two essential cofactors in the OEC, Ca2+ and Cl-, and has shown that Ca2+ is an integral component of the OEC and is proximal to Mn. In addition, dichroism studies on oriented PS II membranes have provided angular information about the Mn-Mn and Mn-Ca vectors. Based on these X-ray spectroscopy data, refined models for the structure of the OEC and a mechanism for oxygen evolution by the OEC are presented.  相似文献   
3.
We have used Mn K-edge absorption and Kbeta emission spectroscopy to determine the oxidation states of the Mn complex in the various S states. We have started exploring the new technique of resonant inelastic X-ray scattering spectroscopy; this technique can be characterized as a Raman process that uses K-edge energies (1s to 4p, ca. 6550 eV) to obtain L-edge-like spectra (2p to 3d, ca. 650 eV). The relevance of these data to the oxidation states and structure of the Mn complex is presented. We have obtained extended X-ray absorption fine structure data from the S(0) and S(3) states and observed heterogeneity in the Mn-Mn distances leading us to conclude that there may be three rather than two di-mu-oxo-bridged units present per tetranuclear Mn cluster. In addition, we have obtained data using Ca and Sr X-ray spectroscopy that provide evidence for a heteronuclear Mn-Ca cluster. The possibility of three di-mu-oxo-bridged Mn-Mn moieties and the proximity of Ca is incorporated into developing structural models for the Mn cluster. The involvement of bridging and terminal O ligands of Mn in the mechanism of oxygen evolution is discussed in the context of our X-ray spectroscopy results.  相似文献   
4.
Karaivanova  VK; Luan  P; Spiro  RG 《Glycobiology》1998,8(7):725-730
Endo-alpha-D-mannosidase is an enzyme involved in N-linked oligosaccharide processing which through its capacity to cleave the internal linkage between the glucose-substituted mannose and the remainder of the polymannose carbohydrate unit can provide an alternate pathway for achieving deglucosylation and thereby make possible the continued formation of complex oligosaccharides during a glucosidase blockade. In view of the important role which has been attributed to glucose on nascent glycoproteins as a regulator of a number of biological events, we chose to further define the in vivo action of endomannosidase by focusing on the well characterized VSV envelope glycoprotein (G protein) which can be formed by the large array of cell lines susceptible to infection by this pathogen. Through an assessment of the extent to which the G protein was converted to an endo-beta-N- acetylglucosaminidase (endo H)-resistant form during a castanospermine imposed glucosidase blockade, we found that utilization of the endomannosidase-mediated deglucosylation route was clearly host cell specific, ranging from greater than 90% in HepG2 and PtK1 cells to complete absence in CHO, MDCK, and MDBK cells, with intermediate values in BHK, BW5147.3, LLC-PK1, BRL, and NRK cell lines. In some of the latter group the electrophoretic pattern after endo H treatment suggested that only one of the two N-linked oligosaccharides of the G protein was processed by endomannosidase. In the presence of the specific endomannosidase inhibitor, Glcalpha1-->3(1- deoxy)mannojirimycin, the conversion of the G protein into an endo H- resistant form was completely arrested. While the lack of G protein processing by CHO cells was consistent with the absence of in vitro measured endomannosidase activity in this cell line, the failure of MDBK and MDCK cells to convert the G protein into an endo H-resistant form was surprising since these cell lines have substantial levels of the enzyme. Similarly, we observed that influenza virus hemagglutinin was not processed in castanospermine-treated MDCK cells. Our findings suggest that studies which rely on glucosidase inhibition to explore the function of glucose in controlling such critical biological phenomena as intracellular movement or quality control should be carried out in cell lines in which the glycoprotein under study is not a substrate for endomannosidase action.   相似文献   
5.

Background

Although cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, the severity of disease is highly variable indicating the influence of modifier genes. The intestines of Cftr deficient mice (CF mice: Cftr tm1Unc ) are prone to obstruction by excessive mucus accumulation and are used as a model of meconium ileus and distal intestinal obstruction syndrome. This phenotype is strongly dependent on the genetic background of the mice. On the C57Bl/6 background, the majority of CF mice cannot survive on solid mouse chow, have inflammation of the small intestine, and are about 30% smaller than wild type littermates. In this work potential modifier loci of the CF intestinal phenotype were identified.

Results

CF mice on a mixed genetic background (95% C57Bl/6 and 5% 129Sv) were compared to CF mice congenic on the C57Bl/6 background for several parameters of the intestinal CF phenotype. CF mice on the mixed background exhibit significantly greater survival when fed dry mouse chow, have reduced intestinal inflammation as measured by quantitative RT-PCR for marker genes, have near normal body weight gain, and have reduced mucus accumulation in the intestinal crypts. There was an indication of a gender effect for body weight gain: males did not show a significant improvement at 4 weeks of age, but were of normal weight at 8 weeks, while females showed improvement at both 4 and 8 weeks. By a preliminary genome-wide PCR allele scanning, three regions were found to be potentially associated with the milder phenotype. One on chr.1, defined by marker D1Mit36, one on chr. 9 defined by marker D9Mit90, and one on chr. 10, defined by marker D10Mit14.

Conclusion

Potential modifier regions were found that have a positive impact on the inflammatory phenotype of the CF mouse small intestine and animal survival. Identification of polymorphisms in specific genes in these regions should provide important new information about genetic modifiers of the CF intestinal phenotype.  相似文献   
6.

Background  

Phylogenetic analysis of human complete mitochondrial DNA sequences has largely contributed to resolving phylogenies and antiquity of different lineages belonging to the majorhaplogroups L, N and M (East-Asian lineages). In the absence of whole mtDNA sequence information of M lineages reported in India that exhibits highest diversity within the sub-continent, the present study was undertaken to provide a detailed analysis of this haplogroup to precisely characterize the lineages and unravel their intricate phylogeny.  相似文献   
7.
Nature invented a catalyst about 3Gyr ago, which splits water with high efficiency into molecular oxygen and hydrogen equivalents (protons and electrons). This reaction is energetically driven by sunlight and the active centre contains relatively cheap and abundant metals: manganese and calcium. This biological system therefore forms the paradigm for all man-made attempts for direct solar fuel production, and several studies are underway to determine the electronic and geometric structures of this catalyst. In this report we briefly summarize the problems and the current status of these efforts and propose a density functional theory-based strategy for obtaining a reliable high-resolution structure of this unique catalyst that includes both the inorganic core and the first ligand sphere.  相似文献   
8.
A 25-year-old previously asymptomatic pregnant woman at 36 weeks'' gestation was noticed to have repetitive monomorphic ventricular tachycardia. A dilated left ventricle with moderately reduced systolic function was found on echocardiographic examination. This is a very rare presentation of peripartum cardiomyopathy (PPCMP) presenting with repetitive monomorphic ventricular tachycardia.  相似文献   
9.
The effect of replacing a histidine ligand on the properties of the oxygen-evolving complex (OEC) and the structure of the Mn4Ca cluster in Photosystem II (PSII) is studied by x-ray absorption spectroscopy using PSII core complexes from the Synechocystis sp. PCC 6803 D1 polypeptide mutant H332E. In the x-ray crystallographic structures of PSII, D1-His332 has been assigned as a direct ligand of a manganese ion, and the mutation of this histidine ligand to glutamate has been reported to prevent the advancement of the OEC beyond the S2Yz intermediate state. The manganese K-edge (1s core electron to 4p) absorption spectrum of D1-H332E shifts to a lower energy compared with that of the native WT samples, suggesting that the electronic structure of the manganese cluster is affected by the presence of the additional negative charge on the OEC of the mutant. The extended x-ray absorption spectrum shows that the geometric structure of the cluster is altered substantially from that of the native WT state, resulting in an elongation of manganese-ligand and manganese-manganese interactions in the mutant. The strontium-H332E mutant, in which calcium is substituted by strontium, confirms that strontium (calcium) is a part of the altered cluster. The structural perturbations caused by the D1-H332E mutation are much larger than those produced by any biochemical treatment or mutation examined previously with x-ray absorption spectroscopy. The substantial structural changes provide an explanation not only for the altered properties of the D1-H332E mutant but also the importance of the histidine ligand for proper assembly of the Mn4Ca cluster.  相似文献   
10.
The structure of photosystem II and the catalytic intermediate states of the Mn4CaO5 cluster involved in water oxidation have been studied intensively over the past several years. An understanding of the sequential chemistry of light absorption and the mechanism of water oxidation, however, requires a new approach beyond the conventional steady-state crystallography and X-ray spectroscopy at cryogenic temperatures. In this report, we present the preliminary progress using an X-ray free-electron laser to determine simultaneously the light-induced protein dynamics via crystallography and the local chemistry that occurs at the catalytic centre using X-ray spectroscopy under functional conditions at room temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号