首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   3篇
  2023年   1篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2009年   2篇
  2008年   2篇
  2006年   2篇
  2005年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
Fire is a primary disturbance in boreal forests and generates both positive and negative climate forcings. The influence of fire on surface albedo is a predominantly negative forcing in boreal forests, and one of the strongest overall, due to increased snow exposure in the winter and spring months. Albedo forcings are spatially and temporally heterogeneous and depend on a variety of factors related to soils, topography, climate, land cover/vegetation type, successional dynamics, time since fire, season, and fire severity. However, how these variables interact to influence albedo is not well understood, and quantifying these relationships and predicting postfire albedo becomes increasingly important as the climate changes and management frameworks evolve to consider climate impacts. Here we developed a MODIS‐derived ‘blue sky’ albedo product and a novel machine learning modeling framework to predict fire‐driven changes in albedo under historical and future climate scenarios across boreal North America. Converted to radiative forcing (RF), we estimated that fires generate an annual mean cooling of ?1.77 ± 1.35 W/m2 from albedo under historical climate conditions (1971–2000) integrated over 70 years postfire. Increasing postfire albedo along a south–north climatic gradient was offset by a nearly opposite gradient in solar insolation, such that large‐scale spatial patterns in RF were minimal. Our models suggest that climate change will lead to decreases in mean annual postfire albedo, and hence a decreasing strength of the negative RF, a trend dominated by decreased snow cover in spring months. Considering the range of future climate scenarios and model uncertainties, we estimate that for fires burning in the current era (2016) the cooling effect from long‐term postfire albedo will be reduced by 15%–28% due to climate change.  相似文献   
2.
3.
In Rhodnius prolixus, testes from both pharate adult and adult males are shown to produce and release ecdysteroids in vitro. Proteinaceous brain extracts from these stages caused stimulation of ecdysteroid production by testes of unfed adults. Therefore, the brain of Rhodnius contains peptides with testis ecdysiotropic activity. The Lymantria testis ecdysiotropin (LTE) also stimulated the in vitro production of ecdysteroids by unfed adult testis but had no stimulatory effect on prothoracic glands. Western blot analysis of brain peptides using anti-LTE revealed the presence of several medium to small size immunoreactive peptides. Two of these peptides with sizes of 16.8 and 11.0 kDa were present only during pharate adult development and the adult stage. Immunohistochemical analysis using confocal laser scanning microscopy revealed abundant LTE-immunoreactive material in cytoplasmic granules of specific neurosecretory cells in the brain and suboesophageal ganglion and the epithelium of the testis sheath. Clusters of two cytologically distinct cell types were seen within the medial neurosecretory cells (MNC) and also a pair of neurons in the posterior protocerebrum. Feeding in both larvae and adult males resulted in massive release of LTE-immunoreactive material from the MNC cells, suggesting a role of LTE-related peptides in both larval-adult development and in male reproductive development. Release from the MNC cells of LTE-immunoreactive material exhibited a clear daily cycling during larval-adult development, which was synchronous with the rhythms of release of prothoracicotropic hormone and bombyxin reported previously. The testis sheath exhibited intense immunofluorescence in pharate adults and unfed adults, which disappeared following a blood meal. It is concluded that LTE-related peptides are developmentally regulated in several locations and may act as ecdysiotropins in Rhodnius. Those in the MNC cells are very probably classical hormones, i.e. are transported to their target sites via the insect haemolymph.  相似文献   
4.
Prothoracicotropic hormone (PTTH) is a brain neurohormone that has been studied for over 80 years. The only known target of PTTH is the prothoracic glands (PGs) of larvae, which synthesize the insect molting hormones (ecdysteroids) and a massive literature exists on this axis. The PGs degenerate around the time of adult emergence, yet presence of PTTH has been reported in the brains of several adult insects. Using an in vitro bioassay system, we confirm that PTTH is present in the adult female brain of Rhodnius prolixus. The material is electrophoretically, immunologically and biologically indistinguishable from larval PTTH. The amount of PTTH in the brain shows a daily rhythm during egg development. We show that brains in vitro release PTTH with a daily rhythm over this period of time. PTTH is released at each scotophase. This is the first report that PTTH is released from the adult brain and functions as a hormone, inviting explanation of its function. Larval PTTH is also known to be released with a daily rhythm, and the clock in the brain controls both larval and adult rhythms. The potential significance of rhythmic PTTH release in female adults is discussed in relation to the regulation of ecdysteroids, egg development and the concept of internal temporal order.  相似文献   
5.
Climate warming and drying is associated with increased wildfire disturbance and the emergence of megafires in North American boreal forests. Changes to the fire regime are expected to strongly increase combustion emissions of carbon (C) which could alter regional C balance and positively feedback to climate warming. In order to accurately estimate C emissions and thereby better predict future climate feedbacks, there is a need to understand the major sources of heterogeneity that impact C emissions at different scales. Here, we examined 211 field plots in boreal forests dominated by black spruce (Picea mariana) or jack pine (Pinus banksiana) of the Northwest Territories (NWT), Canada after an unprecedentedly large area burned in 2014. We assessed both aboveground and soil organic layer (SOL) combustion, with the goal of determining the major drivers in total C emissions, as well as to develop a high spatial resolution model to scale emissions in a relatively understudied region of the boreal forest. On average, 3.35 kg C m?2 was combusted and almost 90% of this was from SOL combustion. Our results indicate that black spruce stands located at landscape positions with intermediate drainage contribute the most to C emissions. Indices associated with fire weather and date of burn did not impact emissions, which we attribute to the extreme fire weather over a short period of time. Using these results, we estimated a total of 94.3 Tg C emitted from 2.85 Mha of burned area across the entire 2014 NWT fire complex, which offsets almost 50% of mean annual net ecosystem production in terrestrial ecosystems of Canada. Our study also highlights the need for fine‐scale estimates of burned area that represent small water bodies and regionally specific calibrations of combustion that account for spatial heterogeneity in order to accurately model emissions at the continental scale.  相似文献   
6.
Possible sites of heme synthesis in the fourth instar of Chironomus thummi were investigated by means of autoradiography of specific isotope incorporation. “Body wall” preparations, which include subepidermal and visceral fat body, oenocytes, muscle, epidermis, and cuticle, were cultured for 1 h in a medium containing tritiated-δ-aminolevulinic acid, a specific precursor to heme biosynthesis. Light-microscopic examination of autoradiographs of sections of the body walls indicates that the subepidermal fat body is the major site of incorporation of the precursor into heme. The visceral fat body shows few silver grains. Oenocytes, as well as muscle and epidermis, are characterized by absence of silver deposits. These findings indicate that the subepidermal fat body of Chironomus is the primary site of heme synthesis, and are discussed in relation to specific hemoglobin synthesis.  相似文献   
7.
8.
Unprecedented rates of climate warming over the past century have resulted in increased forest stress and mortality worldwide. Decreased tree growth in association with increasing temperatures is generally accepted as a signal of temperature‐induced drought stress. However, variations in tree growth alone do not reveal the physiological mechanisms behind recent changes in tree growth. Examining stable carbon isotope composition of tree rings in addition to tree growth can provide a secondary line of evidence for physiological drought stress. In this study, we examined patterns of black spruce growth and carbon isotopic composition in tree rings in response to climate warming and drying in the boreal forest of interior Alaska. We examined trees at three nested scales: landscape, toposequence, and a subsample of trees within the toposequence. At each scale, we studied the potential effects of differences in microclimate and moisture availability by sampling on northern and southern aspects. We found that black spruce radial growth responded negatively to monthly metrics of temperature at all examined scales, and we examined ?13C responses on a subsample of trees as representative of the wider region. The negative ?13C responses to temperature reveal that black spruce trees are experiencing moisture stress on both northern and southern aspects. Contrary to our expectations, ?13C from trees on the northern aspect exhibited the strongest drought signal. Our results highlight the prominence of drought stress in the boreal forest of interior Alaska. We conclude that if temperatures continue to warm, we can expect drought‐induced productivity declines across large regions of the boreal forest, even for trees located in cool and moist landscape positions.  相似文献   
9.
Understanding what influences people to donate, or not donate, body organs and tissues is very important for the future of transplant surgery and medical research (Garrick in J Clin Neurosci 13:524–528, 2006). A previous web-based motivation survey coordinated by the New South Wales Tissue Resource Centre found that most people who participated in brain donation were young, female, educated Australians, not affiliated with any particular religion, and with a higher prevalence of medical illness than the general Australian population. It discussed the main motivating factors for brain donation to be “the benefits of the research to medicine and science”. This study has been replicated in a paper-based version to capture a broader cross-section of the general population, to find out who they are and what motivates them to donate. All consented and registered brain donors (n = 1,323) were sent a questionnaire via the post and recipients were given 3 months to complete the questionnaire and return it in a reply paid envelope. Results were entered into the original web-based survey and analyzed using SPSS version 10. Six hundred and fifty-eight questionnaires were returned completed, a response rate of 53%. The results show that people from all age groups are interested in brain donation. The over 65’s are the largest of the groups (30.7%). The majority of the participants were female (60.6%), married (49.2%) with children (65.8%), employed (52.9%) and have a tertiary education (73.3%). They were either non-religious (48.2%) or Christian (41.6%) and were mostly Australian (65.4%). Most (81%) had pledged to donate other organs and tissues for transplantation. The most commonly cited reasons for the donation were to benefit science (27.6%), to benefit medicine (23.9%), a family illness (17.5%) and to benefit the community (16.6%). This study demonstrates that people across all age groups are interested in brain donation. Recruitment of new brain donors could target the over 65 female Australians, who are not religious or Christian and who have also donated other organs and tissues for transplant purposes. It also indicates the need to make donation for research part of the national transplant donation program.  相似文献   
10.
This review presents a new perspective on the circadian regulation and functions of insect developmental hormones. In Rhodnius prolixus (Hemiptera), the brain neuropeptide prothoracicotropic hormone (PTTH) is released with a circadian rhythm that is controlled by paired photosensitive clocks in the brain. These clocks comprise the dorsal and lateral PER/TIM clock neurons known to regulate behavioral rhythms in Drosophila. Axons of PTTH and clock cells make close contact. Photosensitive PER/TIM clocks also reside in the paired prothoracic glands (PGs), which generate rhythmic synthesis and release of the ecdysteroid molting hormones. The PG clocks are entrained by both light and PTTH. These four clocks are coupled together by both nerves and hormones into a timing system whose primary regulated output is the circadian rhythm of ecdysteroids in the hemolymph. This complex timing system appears necessary to ensure circadian organization of the gene expression that is induced in target cells by ecdysteroids via circadian cycling of the nuclear ecdysteroid receptor (EcR). This multioscillator system serves to transduce 'the day outside' into endocrine rhythms that orchestrate 'the day inside'. It has many functional similarities with vertebrate circadian systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号