首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   11篇
  2021年   3篇
  2018年   2篇
  2015年   4篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   6篇
  2002年   2篇
  2001年   3篇
  2000年   4篇
  1999年   5篇
  1998年   10篇
  1997年   6篇
  1996年   2篇
  1995年   5篇
  1994年   3篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   12篇
  1984年   6篇
  1983年   2篇
  1982年   4篇
  1981年   5篇
  1980年   5篇
  1979年   5篇
  1978年   4篇
  1977年   7篇
  1976年   1篇
  1975年   5篇
  1974年   6篇
  1973年   6篇
  1972年   2篇
  1971年   4篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1966年   1篇
排序方式: 共有188条查询结果,搜索用时 15 毫秒
1.
Choline Administration Elevates Brain Phosphorylcholine Concentrations   总被引:8,自引:6,他引:2  
Abstract: The phosphorylcholine concentration of rat brain rises and falls in response to parallel changes in the concentration of circulating choline. A single oral dose of choline chloride (20 mmol/kg) elevated whole-brain concentrations of both choline and phosphorylcholine 5 h after administration; a greater proportion of exogenously administered choline was retained by the brain in its phosphorylated form than as the free arnine. Striatal phosphorylcholine concentrations were elevated within 2 h of choline administration and continued to be significantly greater than control values for up to 34 h after treatment. The response of striatal choline levels to exogenous choline was of shorter duration than that of phosphorylcholine and was correlated with a significant increase in striatal acetylcholine concentrations. The consumption of a choline-free diet for 7 days lowered both serum choline and striatal phosphorylcholine concentrations, but had no effect on striatal choline or acetylcholine. These results suggest that choline kinase is unsaturated by its substrate in vivo and may thus serve to modulate the response of brain choline concentrations to alterations in the supply of circulating choline.  相似文献   
2.
Plasma choline concentrations were measured in humans, rats, and rabbits within the first few hours of life, before any food was ingested. Neonatal animals and humans had markedly elevated plasma choline levels compared to adult animals or humans. Possible mechanisms responsible for this elevation are discussed and possible consequences for brain function, lung function, and growth are presented.  相似文献   
3.
4.
We examined the formation in vivo of molecular subspecies of brain phosphatidylcholine (PC) via the phospholipid-methylation pathway. [3H]Methionine was infused into a lateral cerebral ventricle, and 3H-labelled PC was isolated from brains of rats 0.1-18 h after the infusions. Three major subspecies of this PC, differing in their fatty acid compositions, were separated on silver-impregnated t.l.c. plates, and the proportions of radioactivities in these three PC fractions were determined. The results indicate that newly-formed PC synthesized by methylation of phosphatidylethanolamine at 0.1 h after [3H]methionine contains a significantly higher proportion of polyunsaturated subspecies (i.e. those with six or four double bonds) than does PC obtained later times after injection of [3H]methionine. This change in the composition of 3H-labelled brain PC occurs gradually and is not due to an influx of radioactive PC from the periphery. Our data suggest that polyunsaturated PC (hexaenes and tetraenes) produced in the brain by methylation of phosphatidylethanolamine turns over faster than does that containing more-saturated fatty acids.  相似文献   
5.
Tyrosine is the precursor for catecholamine neurotransmitters. When catecholamine-containing neurons are physiologically active (as sympathoadrenal cells are in hypotension), tyrosine administration increases catecholamine synthesis and release. Since hypotension can alter plasma amino acid composition, we examined the effects of an acute hypotensive insult on tyrosine concentrations in plasma and spinal cord. Rats were cannulated and bled until the systolic blood pressure was 50 mmHg, or were kept normotensive for 1 h. Tyrosine and other large neutral amino acids (LNAA) known to compete with tyrosine for brain uptake were assayed in plasma and spinal cord. The rate at which intra-arterial [3H]tyrosine disappeared from the plasma was also estimated in hemorrhaged and control rats. In plasma of hemorrhaged animals, both the tyrosine concentration and the tyrosine/LNAA ratio was elevated; moreover, the disappearance of [3H]tyrosine was slowed. Tyrosine concentrations also increased in spinal cords of hemorrhaged-hypotensive rats when compared to normotensive controls. Changes in plasma amino acid patterns may thus influence spinal cord concentrations of amino acid precursors for neurotransmitters during the stress of hemorrhagic shock.  相似文献   
6.
Single batrachotoxin-activated sodium channels from rat brain were modified by trimethyloxonium (TMO) after incorporation in planar lipid bilayers. TMO modification eliminated saxitoxin (STX) sensitivity, reduced the single channel conductance by 37%, and reduced calcium block of inward sodium currents. These effects always occurred concomitantly, in an all-or-none fashion. Calcium and STX protected sodium channels from TMO modification with potencies similar to their affinities for block. Calcium inhibited STX binding to rat brain membrane vesicles and relieved toxin block of channels in bilayers, apparently by competing with STX for the toxin binding site. These results suggest that toxins, permeant cations, and blocking cations can interact with a common site on the sodium channel near the extracellular surface. It is likely that permeant cations transiently bind to this superficial site, as the first of several steps in passing inward through the channel.  相似文献   
7.
We previously observed that the neurotransmitter 5-hydroxytryptamine (5-HT, serotonin) binds with high- and low-affinity interactions to an actin-like protein prepared from rat brain synaptosomes. In this study, we examined its binding to highly purified actin obtained from rabbit skeletal muscle. Monomeric G-actin bound serotonin with high and low affinities, exhibiting equilibrium dissociation constants (KD values) of 5 X 10(-5) M and 4 X 10(-3) M, respectively. The serotonin binding site on actin was distinct from those sites previously characterized for divalent cations, nucleotides, and cytochalasin alkaloids. The binding of serotonin (1 microM) to G-actin was increased as much as 26-fold by divalent cations. Potassium iodine (KI) increased the affinity of G-actin for serotonin, KD values for this binding being 3 X 10(-7) M and X 10(-5) M. Serotonin bound with even higher affinity to polymerized F-actin, with KD values of 2 X 10(-8) M and 2 X 10(-5) M. However, the total number of binding sites on F-actin was only about 4% of the number of G-actin. The binding of serotonin (0.1 microM) to G-actin could be inhibited by phenothiazines (1 microM) or reserpine (10 microM), but not by classical antagonists of serotonin receptors or by drugs that release serotonin or inhibit its uptake. The binding of serotonin to actin in vivo may participate in a contractile process related to neurotransmitter release.  相似文献   
8.
A rat pheochromocytoma (PC12) cell line was used to examine the possibility that 5-hydroxytryptamine (serotonin), 3,4-dihydroxyphenylethylamine (dopamine), or noradrenaline may be associated with cytoplasmic actin, as was suggested by previous in vitro binding studies on an actin-like protein from rat brain synaptosomes. When PC12 cells were incubated with [3H]serotonin. [3H]dopamine, or [3H]noradrenaline for 30 min at 37 degrees C, approximately 2-4% of the radioactivity present in the cells was found to be associated with a high-molecular-weight (actin-like) component in supernatant fractions. Evidence relating this monoamine binding component to actin filaments includes: (a) its strong absorption by myosin filaments at low ionic strength: (b) a decrease in its affinity for myosin in the presence of 1 mM ATP, which lowers the affinity of authentic actin for myosin: (c) displacement of bound [3H]serotonin from it by DNase I, which binds strongly to actin and which inhibits [3H]serotonin binding to actin in vitro; (d) an increase in its binding of each monoamine (by 25-40%) after PC12 cells were preincubated with 10 microM cytochalasin B (a drug that induces depolymerization of F-actin). These findings suggest that serotonin, dopamine, or noradrenaline may associate with actin filaments in vivo.  相似文献   
9.
Sprague-Dawley albino rats or Long-Evans pigmented rats were exposed during the dark phase of the daily light:dark cycle to various intensities of a sunlight-stimulating white fluorescent light (0.022, 0.044, 0.110, 0.220, 0.440 or 2.200 μW/cm2) for 30 min; pineal glands and trunk blood samples were then collected and assayed for melatonin by radioimmunoassay. Albino rats exposed to irradiances of 0.110 μW/cm2 or less had pineal melatonin levels that were not significantly different from those of unexposed animals; higher irradiances significantly (P < 0.001) reduced melatonin levels. In contrast, as little as 0.022 μW/cm2 significantly (P < 0.02) reduced pineal and serum melatonin levels in the pigmented rats. These results suggest that something other than the simple presence or absence of eye pigmentation is the critical factor in determining the sensitivity of the rat's pineal to retinal-mediated photic suppression of melatonin synthesis.  相似文献   
10.
Mean arterial blood pressure was correlated with arterial plasma adenosine levels during intravenous adenosine infusion in unanesthetized, unrestrained rats. Elevation of plasma adenosine to 5 to 6 microM (normal range 1.6 to 4.6 microM) depressed mean arterial pressure by 20 to 30 percent: this was blocked by a single caffeine injection (15 mg/kg). In contrast, caffeine consumption for 3 weeks, followed by a 1-day washout, markedly potentiated responses to adenosine, plasma levels in the 2 to 4 microM range causing 30 to 40 percent reductions in mean arterial pressure. These observations suggest that chronic occupancy of cardiovascular adenosine receptors by caffeine can enhance tissue responsiveness to adenosine, and that endogenous adenosine might act as a circulating hormone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号