首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   5篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有16条查询结果,搜索用时 140 毫秒
1.
Juvenile loggerhead turtles (Caretta caretta) from West Atlantic nesting beaches occupy oceanic (pelagic) habitats in the eastern Atlantic and Mediterranean, whereas larger juvenile turtles occupy shallow (neritic) habitats along the continental coastline of North America. Hence the switch from oceanic to neritic stage can involve a trans-oceanic migration. Several researchers have suggested that at the end of the oceanic phase, juveniles are homing to feeding habitats in the vicinity of their natal rookery. To test the hypothesis of juvenile homing behaviour, we surveyed 10 juvenile feeding zones across the eastern USA with mitochondrial DNA control region sequences (N = 1437) and compared these samples to potential source (nesting) populations in the Atlantic Ocean and Mediterranean Sea (N = 465). The results indicated a shallow, but significant, population structure of neritic juveniles (PhiST = 0.0088, P = 0.016), and haplotype frequency differences were significantly correlated between coastal feeding populations and adjacent nesting populations (Mantel test R2 = 0.52, P = 0.001). Mixed stock analyses (using a Bayesian algorithm) indicated that juveniles occurred at elevated frequency in the vicinity of their natal rookery. Hence, all lines of evidence supported the hypothesis of juvenile homing in loggerhead turtles. While not as precise as the homing of breeding adults, this behaviour nonetheless places juvenile turtles in the vicinity of their natal nesting colonies. Some of the coastal hazards that affect declining nesting populations may also affect the next generation of turtles feeding in nearby habitats.  相似文献   
2.
According to the geographic mosaic theory of coevolution (GMTC), clines of traits reflecting local co‐adaptation (including resistance genes) should be common between a host and its parasite and should persist across time. To test the GMTC‐assumption of persistent clinal patterns we compared the natural prevalence of two parasites on aspen Populus tremula trees: mining moths of the genus Phyllocnistis and leaf rust Melampsora spp. Damage data were collated from the Swedish National Forest Damage Inventory (2004–2006). In addition, occurrence of the parasites was scored in field conditions in two common gardens in the north and south of Sweden over five growing seasons (2004–2008), then related to biomass (stem height and diameter) and to concentrations of eleven leaf phenolics. Phyllocnistis mainly occurred in the northern garden, a distribution range which was confirmed by the countrywide inventory, although Phyllocnistis was more abundant on southern clones, providing evidence for possible local maladaptation. Melampsora occurred all over the country and in both gardens, but built up more quickly on northern clones, which suggests a centre of local clone maladaptation in the north. Stem growth also followed a clinal pattern as did the concentration of three phenolic compounds: benzoic acid, catechin and cinnamic acid. However, only benzoic acid was related to parasite presence: negatively to Phyllocnistis and positively to Melampsora and it could thus be a potential trait under selection. In conclusion, clines of Phyllocnistis were stronger and more persistent compared to Melampsora, which showed contrasting clines of varying strength. Our data thus support the assumption of the GMTC model that clines exist in the border between hot and cold spots and that they may be less persistent for parasites with an elevated gene flow, and/or for parasites which cover relatively larger hot spots surrounded by fewer cold spots.  相似文献   
3.

Background  

Metabolic flux profiling based on the analysis of distribution of stable isotope tracer in metabolites is an important method widely used in cancer research to understand the regulation of cell metabolism and elaborate new therapeutic strategies. Recently, we developed software Isodyn, which extends the methodology of kinetic modeling to the analysis of isotopic isomer distribution for the evaluation of cellular metabolic flux profile under relevant conditions. This tool can be applied to reveal the metabolic effect of proapoptotic drug edelfosine in leukemia Jurkat cell line, uncovering the mechanisms of induction of apoptosis in cancer cells.  相似文献   
4.
Transgenic hybrid aspen (Populus tremula L. x P. tremuloides Michx.) plants expressing a high-isoelectric-point superoxide dismutase (hipI-SOD) gene in antisense orientation were generated to investigate its function. Immunolocalization studies showed the enzyme to be localized extracellularly, in the secondary cell wall of xylem vessels and phloem fibers. The antisense lines of hipI-SOD exhibited a distinct phenotype; growth rate was reduced, stems were thinner and leaves smaller than in wild-type (WT) plants. The abundance of hipI-SOD was reduced in the bark and xylem of plants from these antisense lines. The vascular tissue of transgenic lines became lignified earlier than in WT plants and also showed an increased accumulation of reactive oxygen species (ROS). Xylem fibers and vessels were shorter and thinner in the transgenic lines than in WT plants. The total phenolic content was enhanced in the antisense lines. Furthermore, microarray analysis indicated that several enzymes involved in cell signaling, lignin biosynthesis and stress responses were upregulated in apical vascular tissues of transgenic plants. The upregulation of selected genes involved in lignin biosynthesis was also verified by real-time PCR. The results suggest that, in the transgenic plants, a premature transition into maturation occurs and the process is discussed in terms of the effects of increased accumulation of ROS due to reduced expression of hipI-SOD during development and differentiation.  相似文献   
5.
Secondary attraction to aggregation pheromones plays a central role in the host colonization behavior of the European spruce bark beetle Ips typographus. However, it is largely unknown how the beetles pioneering an attack locate suitable host trees, and eventually accept or reject them. To find possible biomarkers for host choice by I. typographus, we analyzed the chemistry of 58 Norway spruce (Picea abies) trees that were subsequently either (1) successfully attacked and killed, (2) unsuccessfully attacked, or (3) left unattacked. The trees were sampled before the main beetle flight in a natural Norway spruce-dominated forest. No pheromones were used to attract beetles to the experimental trees. To test the trees' defense potential, each tree was treated in a local area with the defense hormone methyl jasmonate (MeJ), and treated and untreated bark were analyzed for 66 different compounds, including terpenes, phenolics and alkaloids. The chemistry of MeJ-treated bark correlated strongly with the success of I. typographus attack, revealing major chemical differences between killed trees and unsuccessfully attacked trees. Surviving trees produced significantly higher amounts of most of the 39 analyzed mono-, sesqui-, and diterpenes and of 4 of 20 phenolics. Alkaloids showed no clear pattern. Differences in untreated bark were less pronounced, where only 1,8-cineole and (-)-limonene were significantly higher in unsuccessfully attacked trees. Our results show that the potential of individual P. abies trees for inducing defense compounds upon I. typographus attack may partly determine tree resistance to this bark beetle by inhibiting its mass attack.  相似文献   
6.
Changes in snow cover might influence arctic ecosystems to the same extent as increased temperatures. Although the duration of snow cover is generally expected to decrease in the future as a result of global warming, the amounts of snow might increase in arctic areas where much of the elevated precipitation will fall as snow. We examined the effects of an increased snow cover, as a result of a snow fence treatment, on soil nitrogen mineralization, plant phenology, plant chemistry (nitrogen and potential defense compounds), the level of invertebrate herbivory, and performance of invertebrate herbivores in an arctic ecosystem, using dwarf birch (Betula nana) and the autumnal moth (Epirrita autumnata) as study organisms. An enhanced and prolonged snow cover increased the level of herbivory on dwarf birch leaves. Larvae feeding on plants that had experienced enhanced snow cover grew faster and pupated earlier than larvae fed with plant material from control plots, indicating that plants from enhanced snow-lie plots produce higher-quality food to herbivores. The increased larval growth rate was strongly correlated with higher leaf nitrogen concentration in plants subjected to snow manipulation, and also to certain phenolic acids. Snow manipulation did not change net nitrogen mineralization rates in the soil or total carbon concentration in leaves, but it altered the within-season fluctuating pattern of leaf phenolic compounds. This study demonstrates a positive relationship between increased snow cover and level of herbivory on deciduous shrubs, thus proposing a negative feedback on the climate-induced dwarf shrub expansion in arctic areas.  相似文献   
7.
Changing snow conditions have strong effects on northern ecosystems, but these effects are rarely incorporated into ecosystem models and our perception of how the ecosystems will respond to a warmer climate. We investigated the relationships between snow cover, plant phenology, level of invertebrate herbivory and leaf chemical traits in Betula nana in four different habitats located along a natural snow cover gradient. To separate the effect of snow per se from other differences, we manipulated the snow cover with snow fences in three habitats. The experimentally prolonged snow cover delayed plant phenology, but not as much as expected based on the pattern along the natural gradient. The positive effect of the snow treatment on plant nitrogen concentration was also weaker than expected, because plant nitrogen concentration closely followed plant phenology. The level of herbivory by leaf-chewing invertebrates increased in response to an increased snow cover, at least at the end of the growing season. The concentration of phenolic substances varied among habitats, treatments and sampling occasions, indicating that B. nana shrubs were able to retain a mosaic of secondary chemical quality despite altered snow conditions. This study shows that the effect of the snow cover period on leaf nitrogen concentration and level of herbivory can be predicted based on differences between habitats, whereas the effect of a changed plant phenology on plant nitrogen concentration is better explained by temporal trends within habitats. These results have important implications for how northern ecosystems should respond to future climate changes.  相似文献   
8.
Efforts to introduce pathogen resistance into landscape tree species by breeding may have unintended consequences for fungal diversity. To address this issue, we compared the frequency and diversity of endophytic fungi and defensive phenolic metabolites in elm (Ulmus spp.) trees with genotypes known to differ in resistance to Dutch elm disease. Our results indicate that resistant U. minor and U. pumila genotypes exhibit a lower frequency and diversity of fungal endophytes in the xylem than susceptible U. minor genotypes. However, resistant and susceptible genotypes showed a similar frequency and diversity of endophytes in the leaves and bark. The resistant and susceptible genotypes could be discriminated on the basis of the phenolic profile of the xylem, but not on basis of phenolics in the leaves or bark. As the Dutch elm disease pathogen develops within xylem tissues, the defensive chemistry of resistant elm genotypes thus appears to be one of the factors that may limit colonization by both the pathogen and endophytes. We discuss a potential trade-off between the benefits of breeding resistance into tree species, versus concomitant losses of fungal endophytes and the ecosystem services they provide.  相似文献   
9.
Stenberg JA  Witzell J  Ericson L 《Oecologia》2006,148(3):414-425
In this paper, we introduce the coevolution-by-coexistence hypothesis which predicts that the strength of a coevolutionary adaptation will become increasingly apparent as long as the corresponding selection from an interacting counterpart continues. Hence, evolutionary interactions between plants and their herbivores can be studied by comparing discrete plant populations with known history of herbivore colonization. We studied populations of the host plant, Filipendula ulmaria (meadow sweet), on six islands, in a Bothnian archipelago subject to isostatic rebound, that represent a spatio-temporal gradient of coexistence with its two major herbivores, the specialist leaf beetles Galerucella tenella and Altica engstroemi. Regression analyses showed that a number of traits important for insect-plant interactions (leaf concentrations of individual phenolics and condensed tannins, plant height, G. tenella adult feeding and oviposition) were significantly correlated with island age. First, leaf concentrations of condensed tannins and individual phenolics were positively correlated with island age, suggesting that plant resistance increased after herbivore colonization and continued to increase in parallel to increasing time of past coexistence, while plant height showed a reverse negative correlation. Second, a multi-choice experiment with G. tenella showed that both oviposition and leaf consumption of the host plants were negatively correlated with island age. Third, larvae performed poorly on well-defended, older host populations and well on less-defended, younger populations. Thus, no parameter assessed in this study falsifies the coevolution-by-coexistence hypothesis. We conclude that spatio-temporal gradients present in rising archipelagos offer unique opportunities to address evolutionary interactions, but care has to be taken as abiotic (and other biotic) factors may interact in a complicated way.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   
10.
In this study we examined the responses of the dominant understorey plant species, Vaccinium myrtillus, in a Swedish boreal forest to nitrogen applications and repeated damage by clipping. Four years of clipping V. myrtillus reduced its abundance, regardless of whether the clipping was combined with fertilization or not. The treatments also induced changes in growth form and concentration of phenolic compounds in the shoots. Repeated damage to the shrub caused reductions in both the length and diameter of the shoots, while fertilization alone increased their diameter. Fertilization also decreased the concentration of condensed tannins in shoots of V. myrtillus, while clipping had no significant effect in this respect. Condensed tannin concentrations were higher in shoots given the combined fertilization and clipping treatment than in shoots that were fertilized but not clipped. The effect on tannins is in accordance with the predictions of the CNB‐hypothesis. Among the seven individual phenolic compounds analysed only one, a cinnamic acid derivate, showed a significant effect of the treatments. Repeated damage resulted in decreased concentration of this phenolic acid. In addition there was a tendency towards treatment effects on both nitrogen and carbon concentration of the V. myrtillus shoots, but none of these effects were statistically significant. The treatment‐induced changes in V. myrtillus also affected the food preferences of grey‐sided voles (Clethrionomys rufocanus), resulting in the following order of preference among the treatments: 1) fertilization and clipping, 2) fertilization, 3) control and 4) clipping. Not only biochemical changes, but also changes in growth form were found to influence the preferences, as the voles avoided the smallest shoots. This size‐dependent feeding may partly explain the observed differences in their preferences. Thus, induced changes in growth form need to be considered when conclusions about changes in herbivores’ preference are made.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号