首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2021年   1篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2008年   1篇
  2006年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
The Plasmodium falciparum lactate dehydrogenase enzyme (PfLDH) has been considered as a potential molecular target for antimalarials due to this parasite's dependence on glycolysis for energy production. Because the LDH enzymes found in P. vivax, P. malariae and P. ovale (pLDH) all exhibit ~90% identity to PfLDH, it would be desirable to have new anti-pLDH drugs, particularly ones that are effective against P. falciparum, the most virulent species of human malaria. Our present work used docking studies to select potential inhibitors of pLDH, which were then tested for antimalarial activity against P. falciparum in vitro and P. berghei malaria in mice. A virtual screening in DrugBank for analogs of NADH (an essential cofactor to pLDH) and computational studies were undertaken, and the potential binding of the selected compounds to the PfLDH active site was analyzed using Molegro Virtual Docker software. Fifty compounds were selected based on their similarity to NADH. The compounds with the best binding energies (itraconazole, atorvastatin and posaconazole) were tested against P. falciparum chloroquine-resistant blood parasites. All three compounds proved to be active in two immunoenzymatic assays performed in parallel using monoclonals specific to PfLDH or a histidine rich protein (HRP2). The IC(50) values for each drug in both tests were similar, were lowest for posaconazole (<5 μM) and were 40- and 100-fold less active than chloroquine. The compounds reduced P. berghei parasitemia in treated mice, in comparison to untreated controls; itraconazole was the least active compound. The results of these activity trials confirmed that molecular docking studies are an important strategy for discovering new antimalarial drugs. This approach is more practical and less expensive than discovering novel compounds that require studies on human toxicology, since these compounds are already commercially available and thus approved for human use.  相似文献   
2.
Lectins are proteins with ability to recognize specific carbohydrates. These are present in virtually all organisms and have increasing applications in biotechnology. Here, our aim was to purify lectins from seeds of Crotalaria spectabilis Roth and determine their agglutinative ability. In this study, 45 g of seeds were milled, their proteins were precipitated by acetone or ammonium sulfate and purified by exclusion and ion-exchange chromatography. An isolated lectin was submitted to tests for hemagglutination and inhibition of hemagglutinating activity by carbohydrates as well as tests for its response to chelating and reducing agents. Our results show that the apparent molecular weight (as determined by SDS-PAGE) of the lectin is 30 kDa, and the tests for inhibition of erythrocytes’ agglutinative activity by sugars were positive for d-galactose and N-acetyl-d-galactosamine. Data obtained with the chelating agent EDTA demonstrated the presence of divalent cations in the protein structure. However, the reducing agent 2-mercaptoethanol was unable to inhibit the protein’s bioactivity. The lectin agglutinated the blood groups A, B, AB and O, as well as bacterial lineages from the species Leptospira interrogans and Leptospira biflexa, indicating a prospective application in the diagnosis and treatment of leptospirosis.  相似文献   
3.
4.
Chloroquine (CQ) is a cost effective antimalarial drug with a relatively good safety profile (or therapeutic index). However, CQ is no longer used alone to treat patients with Plasmodium falciparum due to the emergence and spread of CQ-resistant strains, also reported for P. vivax. Despite CQ resistance, novel drug candidates based on the structure of CQ continue to be considered, as in the present work. One CQ analog was synthesized as monoquinoline (MAQ) and compared with a previously synthesized bisquinoline (BAQ), both tested against P. falciparum in vitro and against P. berghei in mice, then evaluated in vitro for their cytotoxicity and ability to inhibit hemozoin formation. Their interactions with residues present in the NADH binding site of P falciparum lactate dehydrogenase were evaluated using docking analysis software. Both compounds were active in the nanomolar range evaluated through the HRPII and hypoxanthine tests. MAQ and BAQ derivatives were not toxic, and both compounds significantly inhibited hemozoin formation, in a dose-dependent manner. MAQ had a higher selectivity index than BAQ and both compounds were weak PfLDH inhibitors, a result previously reported also for CQ. Taken together, the two CQ analogues represent promising molecules which seem to act in a crucial point for the parasite, inhibiting hemozoin formation.  相似文献   
5.
The present study reports the structural characteristics, the biological activities, and preliminary clinical investigations of three synthetic members of the dermaseptin family of antimicrobial peptides. The three peptides showed similar tendencies to form alpha-helical structures in non-polar media. The antimicrobial activity towards bacteria and fungi was determined in the micromolar concentration and the peptides did not influenced peritoneal cells viability. One of the peptides was intravenously administered in mice at concentrations similar to those of antibiotics employed in bacterial/fungal infections and it did not cause any detectable changes in cells and tissues.  相似文献   
6.
Leprosy is the second most prevalent mycobacterial disease globally. Despite the existence of an effective therapy, leprosy incidence has consistently remained above 200,000 cases per year since 2010. Numerous host genetic factors have been identified for leprosy that contribute to the persistently high case numbers. In the past decade, genetic epidemiology approaches, including genome-wide association studies (GWAS), identified more than 30 loci contributing to leprosy susceptibility. However, GWAS loci commonly encompass multiple genes, which poses a challenge to define causal candidates for each locus. To address this problem, we hypothesized that genes contributing to leprosy susceptibility differ in their frequencies of rare protein-altering variants between cases and controls. Using deep resequencing we assessed protein-coding variants for 34 genes located in GWAS or linkage loci in 555 Vietnamese leprosy cases and 500 healthy controls. We observed 234 nonsynonymous mutations in the targeted genes. A significant depletion of protein-altering variants was detected for the IL18R1 and BCL10 genes in leprosy cases. The IL18R1 gene is clustered with IL18RAP and IL1RL1 in the leprosy GWAS locus on chromosome 2q12.1. Moreover, in a recent GWAS we identified an HLA-independent signal of association with leprosy on chromosome 6p21. Here, we report amino acid changes in the CDSN and PSORS1C2 genes depleted in leprosy cases, indicating them as candidate genes in the chromosome 6p21 locus. Our results show that deep resequencing can identify leprosy candidate susceptibility genes that had been missed by classic linkage and association approaches.  相似文献   
7.
This study assesses the effects of compound velutinol A obtained from M. velutina in the rat paw edema induced by several phlogistic agents. Attempts were made to analyze how velutinol A is able to inhibit kinin B(1) receptor-mediated inflammatory responses. Velutinol A (100 nmol/paw) partially reduced (about 30%) the edema evoked by carrageenan (300 microg/paw). However, velutinol A (100 nmol/paw) failed to affect the edema induced by histamine (200 nmol/paw), substance P (30 nmol/paw), PAF (10 nmol/paw) or BK (3 nmol/paw). Interestingly, the edema caused by the selective kinin B(1) receptor agonist des-Arg(9)-BK (100 nmol/paw) in animals pre-treated with PAF or LPS was significantly inhibited by velutinol A (100 nmol/paw) (48 and 46%, respectively). A similar inhibition of des-Arg(9)-BK-induced edema after pre-treatment with PAF was obtained with the non-peptidic and selective B(1) receptor antagonist SSR 240612 (60 nmol/paw) (46%). In addition, the systemic administration of velutinol A (10 mg/kg, i.p.) or SSR 240612 (1 mg/kg, i.p.) also caused a significant reduction of des-Arg(9)-BK (100 nmol/paw)-induced edema in PAF-treated rats (51 and 43%, respectively). The results provide convincing evidence that velutinol A selectively blocks the edema responses mediated by B(1) receptor activation in vivo. This compound might represent a new non-peptidic and selective antagonist for kinin B(1) receptors.  相似文献   
8.

Background

Leprosy is an endemic infectious disease caused by Mycobacterium leprae that predominantly attacks the skin and peripheral nerves, leading to progressive impairment of motor, sensory and autonomic function. Little is known about how this peripheral neuropathy affects corticospinal excitability of handgrip muscles. Our purpose was to explore the motor cortex organization after progressive peripheral nerve injury and upper-limb dysfunction induced by leprosy using noninvasive transcranial magnetic stimulation (TMS).

Methods

In a cross-sectional study design, we mapped bilaterally in the primary motor cortex (M1) the representations of the hand flexor digitorum superficialis (FDS), as well as of the intrinsic hand muscles abductor pollicis brevis (APB), first dorsal interosseous (FDI) and abductor digiti minimi (ADM). All participants underwent clinical assessment, handgrip dynamometry and motor and sensory nerve conduction exams 30 days before mapping. Wilcoxon signed rank and Mann-Whitney tests were performed with an alpha-value of p<0.05.

Findings

Dynamometry performance of the patients’ most affected hand (MAH), was worse than that of the less affected hand (LAH) and of healthy controls participants (p = 0.031), confirming handgrip impairment. Motor threshold (MT) of the FDS muscle was higher in both hemispheres in patients as compared to controls, and lower in the hemisphere contralateral to the MAH when compared to that of the LAH. Moreover, motor evoked potential (MEP) amplitudes collected in the FDS of the MAH were higher in comparison to those of controls. Strikingly, MEPs in the intrinsic hand muscle FDI had lower amplitudes in the hemisphere contralateral to MAH as compared to those of the LAH and the control group. Taken together, these results are suggestive of a more robust representation of an extrinsic hand flexor and impaired intrinsic hand muscle function in the hemisphere contralateral to the MAH due to leprosy.

Conclusion

Decreased sensory-motor function induced by leprosy affects handgrip muscle representation in M1.  相似文献   
9.
The literature has reported that ferriprotoporphyrin IX (hematin) intoxicates the malarial parasite through competition with NADH for the active site of the enzyme lactate dehydrogenase (LDH). In order to avoid this, the parasite polymerizes hematin to hemozoin. The quinoline derivatives are believed to form complexes with dimeric hematin, avoiding the formation of hemozoin and still inhibiting LDH. In order to investigate this hypothesis we calculated the docking energies of NADH and some quinoline derivatives (in the free forms and in complex with dimeric hematin) in the active site of the Plasmodium falciparum LDH (PfLDH). Ours results showed better docking score values to the complexes when compared to the free compounds, pointing them as more efficient inhibitors of Pf_LDH. Further we performed Molecular Dynamics (MD) simulations studies on the best docking conformation of the complex chloroquine-dimeric hematin with PfLDH. Our in silico results corroborate experimental data suggesting a possible action route for the quinoline derivatives in the inhibition of PfLDH.  相似文献   
10.
Compounds similar to lapatinib and gefitinib have been investigated as potential inhibitors of the intracellular receptor tyrosine kinase (RTK) domain of the human epidermal receptor 2 (HER2), which is a promising molecular target to the drug design of new chemotherapies for breast, lung, ovarian and colorectal cancers. In this study, we have searched potential HER2 inhibitors used for treatment of other illnesses such as hepatitis, bacterial infections and sexual impotence screened in the DrugBank. The compounds selected were subjected to virtual screening docking in order to evaluate the main interactions between them and the RTK domain of HER2. The selected compounds were investigated by flexible docking, molecular dynamics studies and ΔG bind calculations. The results suggest that antrafenine, saprisartan, reserpine, irinotecan and udenafil are potential candidates to inhibit the RTK domain of HER2.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号