首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   4篇
  2023年   1篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2016年   4篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2004年   1篇
  2001年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1974年   1篇
  1972年   3篇
排序方式: 共有43条查询结果,搜索用时 234 毫秒
1.
Nonphotosynthetic plants possess strongly reconfigured plastomes attributable to convergent losses of photosynthesis and housekeeping genes, making them excellent systems for studying genome evolution under relaxed selective pressures. We report the complete plastomes of 10 photosynthetic and nonphotosynthetic parasites plus their nonparasitic sister from the broomrape family (Orobanchaceae). By reconstructing the history of gene losses and genome reconfigurations, we find that the establishment of obligate parasitism triggers the relaxation of selective constraints. Partly because of independent losses of one inverted repeat region, Orobanchaceae plastomes vary 3.5-fold in size, with 45 kb in American squawroot (Conopholis americana) representing the smallest plastome reported from land plants. Of the 42 to 74 retained unique genes, only 16 protein genes, 15 tRNAs, and four rRNAs are commonly found. Several holoparasites retain ATP synthase genes with intact open reading frames, suggesting a prolonged function in these plants. The loss of photosynthesis alters the chromosomal architecture in that recombinogenic factors accumulate, fostering large-scale chromosomal rearrangements as functional reduction proceeds. The retention of DNA fragments is strongly influenced by both their proximity to genes under selection and the co-occurrence with those in operons, indicating complex constraints beyond gene function that determine the evolutionary survival time of plastid regions in nonphotosynthetic plants.  相似文献   
2.
The biocontrol properties of Trichoderma species are well documented, but their effectiveness in antagonism of the problematic Sclerotium cepivorum, the causal agent of white rot in Allium species, appears limited with reports of significant control only relating to deliberately-mutated strains of Trichoderma. Our previous studies have indicated the possibility of using selected naturally-occurring strains of the antagonist in the suppression of other diseases; now in vitro and controlled environment in vivo studies have indicated that a degree of control of Onion White Rot is possible, and that the selected antagonist strains can be used in integrated treatments with Iprodione to good effect. The possible value of such treatments is considered in light of other approaches to the suppression of this continuing problem.  相似文献   
3.
Summary : FT is a tool written in C++, which implements the Fourier analysis method to locate periodicities in aminoacid or DNA sequences. It is provided for free public use on a WWW server with a Java interface. Availability : The server address is http://o2.db. uoa.gr/FT Contact : shamodr@atlas.uoa.gr   相似文献   
4.
BACKGROUND AND AIMS: The recent assembly of the complete sequence of the plastid genome of the model taxon Physcomitrella patens (Funariaceae, Bryophyta) revealed that a 71-kb fragment, encompassing much of the large single copy region, is inverted. This inversion of 57% of the genome is the largest rearrangement detected in the plastid genomes of plants to date. Although initially considered diagnostic of Physcomitrella patens, the inversion was recently shown to characterize the plastid genome of two species from related genera within Funariaceae, but was lacking in another member of Funariidae. The phylogenetic significance of the inversion has remained ambiguous. METHODS: Exemplars of all families included in Funariidae were surveyed. DNA sequences spanning the inversion break ends were amplified, using primers that anneal to genes on either side of the putative end points of the inversion. Primer combinations were designed to yield a product for either the inverted or the non-inverted architecture. KEY RESULTS: The survey reveals that exemplars of eight genera of Funariaceae, the sole species of Disceliaceae and three generic representatives of Encalyptales all share the 71-kb inversion in the large single copy of the plastid genome. By contrast, the plastid genome of Gigaspermaceae (Funariales) is characterized by a gene order congruent with that described for other mosses, liverworts and hornworts, and hence it does not possess this inversion. CONCLUSIONS: The phylogenetic distribution of the inversion in the gene order supports a hypothesis only weakly supported by inferences from sequence data whereby Funariales are paraphyletic, with Funariaceae and Disceliaceae sharing a common ancestor with Encalyptales, and Gigaspermaceae sister to this combined clade. To reflect these relationships, Gigaspermaceae are excluded from Funariales and accommodated in their own order, Gigaspermales order nov., within Funariideae.  相似文献   
5.
Green plants, broadly defined as green algae and the land plants (together, Viridiplantae), constitute the primary eukaryotic lineage that successfully colonized Earth's emergent landscape. Members of various clades of green plants have independently made the transition from fully aquatic to subaerial habitats many times throughout Earth's history. The transition, from unicells or simple filaments to complex multicellular plant bodies with functionally differentiated tissues and organs, was accompanied by innovations built upon a genetic and phenotypic toolkit that have served aquatic green phototrophs successfully for at least a billion years. These innovations opened an enormous array of new, drier places to live on the planet and resulted in a huge diversity of land plants that have dominated terrestrial ecosystems over the past 500 million years. This review examines the greening of the land from several perspectives, from paleontology to phylogenomics, to water stress responses and the genetic toolkit shared by green algae and plants, to the genomic evolution of the sporophyte generation. We summarize advances on disparate fronts in elucidating this important event in the evolution of the biosphere and the lacunae in our understanding of it. We present the process not as a step-by-step advancement from primitive green cells to an inevitable success of embryophytes, but rather as a process of adaptations and exaptations that allowed multiple clades of green plants, with various combinations of morphological and physiological terrestrialized traits, to become diverse and successful inhabitants of the land habitats of Earth.  相似文献   
6.
Salt effects on histone IV conformation   总被引:4,自引:0,他引:4  
R R Wickett  H J Li  I Isenberg 《Biochemistry》1972,11(16):2952-2957
  相似文献   
7.
8.
9.
10.
The utility of a nuclear protein-coding gene for reconstructing phylogenetic relationships within the family Culicidae was explored. Relationships among 13 species representing three subfamilies and nine genera of Culicidae were analyzed using a 762-bp fragment of coding sequence from the eye color gene, white. Outgroups for the study were two species from the sister group Chaoboridae. Sequences were determined from clone PCR products amplified from genomic DNA, and aligned following conceptual intron splicing and amino acid translation. Third codon positions were characterized by high levels of divergence and biased nucleotide composition, the intensity and direction of which varied among taxa. Equal weighting of all characters resulted in parsimony and neighboring-joining trees at odds with the generally accepted phylogenetic hypothesis based on morphology and rDNA sequences. The application of differential weighting schemes recovered the traditional hypothesis, in which the subfamily Anophelinae formed the basal clade. The subfamily Toxorhynchitinae occupied an intermediate position, and was a sister group to the subfamily Culicinae. Within Culicinae, the genera Sabethes and Tripteroides formed an ancestral clade, while the Culex-Deinocerites and Aedes- Haemagogus clades occupied increasingly derived positions in the molecular phylogeny. An intron present in the Culicinae- Toxorhynchitinae lineage and one outgroup taxon was absent in the basal Anophelinae lineage and the second outgroup taxon, suggesting that intron insertions or deletions may not always be reliable systematic characters.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号