首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   13篇
  2023年   1篇
  2010年   1篇
  2009年   1篇
  2007年   3篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  2001年   2篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
排序方式: 共有34条查询结果,搜索用时 777 毫秒
1.
The herpes simplex virus DNA polymerase is composed of two subunits, a large catalytic subunit (Pol) and a smaller subunit (UL42) that increases the processivity of the holoenzyme. The interaction between the two polypeptides is of interest both for the mechanism by which it enables the enzyme to synthesize long stretches of DNA processively and as a possible target for the rational design of novel antiviral drugs. Here, we demonstrate through a combination of insertion and deletion mutagenesis that the carboxy-terminal 35 amino acids of Pol are crucial for binding UL42. The functional importance of the interaction was confirmed by the finding that a pol mutant defective for UL42 binding retained polymerase activity, but did not synthesize longer DNA products in the presence of UL42. Moreover, several association-incompetent mutants failed to complement the replication of a pol null mutant in a transient transfection assay, confirming that the Pol-UL42 interaction is necessary for virus replication in vivo and therefore a valid target for directed drug design.  相似文献   
2.
Kubalová  Ivona  Weisshart  Klaus  Houben  Andreas  Schubert  Veit 《Chromosoma》2023,132(1):19-29
Chromosoma - Topoisomerase IIα (Topo IIα) and the centromere-specific histone H3 variant CENH3 are key proteins involved in chromatin condensation and centromere determination,...  相似文献   
3.
Replication protein A (RPA) is a stable heterotrimeric complex consisting of p70, p32 and p14 subunits. The protein plays a crucial role in SV40 minichromosome replication. Peptides of p70 representing interaction sites for the smaller two subunits, DNA as well as the viral initiator protein large T-antigen (Tag) and the cellular DNA polymerase alpha-primase (Pol) all interfered with the replication process indicating the importance of the different p70 activities in this process. Inhibition by the peptide disrupting protein-protein interactions was observed only during the pre-initiation stage prior to primer synthesis, suggesting the formation of a stable initiation complex between RPA, Tag and Pol at the primer end.  相似文献   
4.
Although p48 is the most conserved subunit of mammalian DNA polymerase alpha-primase (pol-prim), the polypeptide is the major species-specific factor for mouse polyomavirus (PyV) DNA replication. Human and murine p48 contain two regions (A and B) that show significantly lower homology than the rest of the protein. Chimerical human-murine p48 was prepared and coexpressed with three wild-type subunits of pol-prim, and four subunit protein complexes were purified. All enzyme complexes synthesized DNA on single-stranded (ss) DNA and replicated simian virus 40 DNA. Although the recombinant protein complexes physically interacted with PyV T antigen (Tag), we determined that the murine region A mediates the species specificity of PyV DNA replication in vitro. More precisely, the nonconserved phenylalanine 262 of mouse p48 is crucial for this activity, and pol-prim with mutant p48, h-S262F, supports PyV DNA replication in vitro. DNA synthesis on RPA-bound ssDNA revealed that amino acid (aa) 262, aa 266, and aa 273 to 288 are involved in the functional cooperation of RPA, pol-prim, and PyV Tag.  相似文献   
5.
The initiation of SV40 (simian virus 40) DNA replication requires the co-operative interactions between the viral Tag (large T-antigen), RPA (replication protein A) and Pol (DNA polymerase alpha-primase) on the template DNA. Binding interfaces mapped on these enzymes and expressed as peptides competed with the mutual interactions of the native proteins. Prevention of the genuine interactions was accomplished only prior to the primer synthesis step and blocked the assembly of a productive initiation complex. Once the complex was engaged in the synthesis of an RNA primer and its extension, the interfering effects of the peptides ceased, suggesting a stable association of the replication factors during the initiation phase. Specific antibodies were still able to disrupt preformed interactions and inhibited primer synthesis and extension activities, underlining the crucial role of specific protein-protein contacts during the entire initiation process.  相似文献   
6.
Spider silk is predominantly composed of structural proteins called spider fibroins or spidroins. The major ampullate silk that forms the dragline and the cobweb's frame threads of Nephila clavipes is believed to be a composite of two spidroins, designated as Masp 1 and 2. Specific antibodies indeed revealed the presence of Masp 1 and 2 specific epitopes in the spinning dope and solubilized threads. In contrast, sequencing of specific peptides obtained from solubilized threads or gland urea extracts were exclusively homologous to segments of Masp 1, suggesting that this protein is more abundantly expressed in silk than Masp 2. The strength of immunoreactivities corroborated this finding. Polypeptides reactive against both Masp 1 and 2 specific antibodies were found to be expressed in the epithelia of the tail and different gland zones and accumulated in the gland secreted material. Both extracts of gland secretion and solubilized threads showed a ladder of polypeptides in the size range of 260-320 kDa in gel electrophoresis under reducing conditions, whereas gel filtration chromatography yielded molecular masses of the proteins of approximately 300-350 kDa. In the absence of a reducing agent, dimeric forms of the spidroins were observed with estimated molecular masses of 420-480 kDa according to gel electrophoresis and 550-650 kDa as determined by gel filtration chromatography. Depending on the preparation, some silk material readily underwent degradation, and polypeptides down to 20 kDa in size and less were detectable.  相似文献   
7.
The spider silk gene family to the current date has been developed by gene duplication and homogenization events as well as conservation of crucial sequence parts. These evolutionary processes have created an amazing diversity of silk types each associated with specific properties and functions. In addition, they have led to allelic and gene variants within a species as exemplified by the major ampullate spidroin 1 gene of Nephila clavipes. Due to limited numbers of individuals screened to date little is known about the extent of these heterogeneities and how they are finally manifested in the proteins. Using expanded sample sizes, we show that sequence variations expressed as deletions or insertions of tri-nucleotides lead to different sized and structured repetitive units throughout a silk protein. Moreover, major ampullate spidroins 1 can quite dramatically differ in their overall lengths; however, extreme variants do not spread widely in a spider population. This suggests that a certain size range stabilized by purifying selection is important for spidroin 1 gene integrity and protein function. More than one locus for spidroin 1 genes possibly exist within one individual genome, which are homogenized in size, are differentially expressed and give a spider a certain degree of adaptation on silk’s composition and properties. Such mechanisms are shared to a lesser extent by the second major ampullate spidroin gene.  相似文献   
8.
Herpes simplex virus DNA polymerase consists of a catalytic subunit, Pol, and a processivity subunit, UL42, that, unlike other established processivity factors, binds DNA directly. We used gel retardation and filter-binding assays to investigate how UL42 affects the polymerase-DNA interaction. The Pol/UL42 heterodimer bound more tightly to DNA in a primer-template configuration than to single-stranded DNA (ssDNA), while Pol alone bound more tightly to ssDNA than to DNA in a primer-template configuration. The affinity of Pol/UL42 for ssDNA was reduced severalfold relative to that of Pol, while the affinity of Pol/UL42 for primer-template DNA was increased ~15-fold relative to that of Pol. The affinity of Pol/UL42 for circular double-stranded DNA (dsDNA) was reduced drastically relative to that of UL42, but the affinity of Pol/UL42 for short primer-templates was increased modestly relative to that of UL42. Pol/UL42 associated with primer-template DNA ~2-fold faster than did Pol and dissociated ~10-fold more slowly, resulting in a half-life of 2 h and a subnanomolar Kd. Despite such stable binding, rapid-quench analysis revealed that the rates of elongation of Pol/UL42 and Pol were essentially the same, ~30 nucleotides/s. Taken together, these studies indicate that (i) Pol/UL42 is more likely than its subunits to associate with DNA in a primer-template configuration rather than nonspecifically to either ssDNA or dsDNA, and (ii) UL42 reduces the rate of dissociation from primer-template DNA but not the rate of elongation. Two models of polymerase-DNA interactions during replication that may explain these findings are presented.  相似文献   
9.
Silks are protein fibers with remarkable mechanical properties. The discovery of the structural features that govern these properties is a challenge for biochemistry and structural biology. This review summarizes the results of the biochemistry of silk proteins as well as the knowledge of the molecular biology of the respective genes. In addition, an overview is presented on the efforts to produce recombinant silk proteins by biotechnological techniques.  相似文献   
10.
We used indirect immunofluorescence to examine the factors determining the intranuclear location of herpes simplex virus (HSV) DNA polymerase (Pol) in infected cells. In the absence of viral DNA replication, HSV Pol colocalized with the HSV DNA-binding protein ICP8 in nuclear framework-associated structures called prereplicative sites. In the presence of viral DNA replication, HSV Pol colocalized with ICP8 in globular intranuclear structures called replication compartments. In cells infected with mutant viruses encoding defective ICP8 molecules, Pol localized within the cell nucleus but showed a general diffuse intranuclear distribution. In uninfected cells transfected with a plasmid expressing Pol, Pol similarly showed a diffuse intranuclear distribution. Therefore, Pol can localize to the cell nucleus without other viral proteins, but functional ICP8 is required for Pol to localize to prereplicative sites. In cells infected with mutant viruses encoding defective Pol molecules, ICP8 localized to prereplicative sites. Thus, Pol or the portions of Pol not expressed by the mutant viruses are not essential for the formation of prereplicative sites or the localization of ICP8 to these structures. These results demonstrate that a specific nuclear protein can influence the intranuclear location of another nuclear protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号