首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   6篇
  2020年   1篇
  2015年   2篇
  2013年   3篇
  2012年   3篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2001年   4篇
  2000年   2篇
  1997年   2篇
  1996年   3篇
  1994年   3篇
  1993年   3篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   4篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1974年   2篇
  1973年   4篇
  1972年   1篇
  1971年   1篇
排序方式: 共有76条查询结果,搜索用时 203 毫秒
1.
Summary The apparent membrane fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene has been reported to be lower in intact erythrocytes than in isolated erythrocyte membranes. Although this difference was once suggested to be caused by the fluidizing effect associated with the loss of erythrocyte proteins during membrane isolation, it is currently thought to be an artifact resulting from intense light scattering properties of intact erythrocytes which overwhelm extrapolation methods of correcting for light scattering. This study confirmed that, at erythrocyte concentrations greater than 107 cells/ml, this difference was caused by intense light scattering; however, at erythrocyte concentrations less than 4.0 × 106 cells/ml, the anisotropy values for erythrocytes and isolated membranes are identical, demonstrating that intense light scattering can be overcome with dilute suspensions of cells.  相似文献   
2.
In our work evaluating the antioxidant properties of a number of cardiovascular drugs, we have emphasized the importance of lipophilicity as a property contributing to antioxidant potency. Thus, the dihydropyridine calcium channel blockers and propranolol, one of the most lipophilic beta-blockers, were found to exhibit the greatest potency in membrane and cellular models. Both beta-blockers and calcium channel blockers are classified as antihypertensive agents. We found that the specific chemical moieties of various drugs may participate in the antioxidant mechanism of action. While reviewing relevant work from the past literature, it became apparent that some of the chemical moieties of antihypertensive and vasodilator drugs may bind transition metals. Thus, this present review focuses on common properties of transition metal-interaction that are shared, to a greater or lesser degree, by a number of vasoactive drugs and chemical agents. Although this observation has been pursued by other investigators in the past, we submit that the potential relevance to the newer pharmacological agents needs to be explored further. In addition, new information regarding the role of transition metals and free radicals involving vascular cells focuses greater importance on transition metal-interaction as a potential mechanism in vasodilation. This review does not intend to be inclusive of all chemical structures capable of binding transition metals; only those that are clinically relevant will be considered in some detail. Potential mechanisms of metal-chelating actions leading to vasodilation are also discussed.  相似文献   
3.
Phospholipase C activity capable of hydrolysing phosphatidylinositol in bovine heart was resolved into four forms (I-IV) by ion-exchange chromatography. Some of these forms could only be detected if the assay was performed at acidic pH (I and IV) or in the presence of deoxycholate (II). Gel-filtration chromatography indicated that the four forms had different molecular weights in the range 40000-120000. I, II and III all had pH optima in the range 4.5-5.5. However, the major form (III) also had substantial activity at pH 7.0 and above. The activities of I, II and III at pH 7.0 were stimulated by deoxycholate; this effect was most marked with I and II, which had very low activity at this pH. All forms of the enzyme were inhibited by EGTA and required 2-5 mM-CaCl2 for maximal activity. When the fractions eluted from the ion-exchange and gel-filtration columns were assayed with polyphosphoinositides as substrates there was a close correspondence to the elution profile obtained with phosphatidylinositol as substrate; there was no evidence for the existence in heart of phospholipase C activities specific for individual phosphoinositides.  相似文献   
4.
5.
6.
Dietary deficiency of magnesium (Mg) in rodents results in cardiomyopathic lesion formation. In our rat model, these lesions develop after 3 weeks on the Mg-deficient diet; significant elevation of several cytokines, IL-1, IL-6 and TNF also occurs. In probing the mechanisms of lesion formation, we obtained data supporting the participation of free radicals (Freedman AMet al.: Bioch Biophys Res Commun 1990; 170: 1102). Recently, we identified an early elevation of circulating substance P and proposed a role of neurogenic peptides during Mg-deficiency (Weglicki WB, Phillips TM: Am J Phys 1992; 262: R734). The present study was designed to evaluate the contribution of neurogenic peptides to the pathogenesis of Mg-deficiency. In the blood, substance-P and calcitonin gene related peptide (CGRP) are elevated during the first week on the diet. During the second week, circulating histamine, PGE2 and TBAR-materials were elevated and red cell glutathione was reduced, all prior to the elevation of the inflammatory cytokines during the third week. When the rats were treated with the substance P-receptor blocker [CP-96,345], the levels of substance P and CGRP remained elevated; however, increases in histamine, PGE2, TBAR-materials, and the decrease in red cell glutathione were inhibited; also, the development of cardiac lesions was inhibited significantly. These data support a central role for neurogenic peptides, especially substance P, in the development of cardiomyopathic lesions during Mg-deficiency.  相似文献   
7.
8.
Preexisting magnesium deficiency may alter the susceptibility of rat hearts to postischemic oxidative injury (free radicals). This was examined in rats maintained for 3 weeks on a magnesium-deficient (Mg-D) diet with or without concurrent vitamin E treatment (1.2 mg/day, SC). Magnesium-sufficient (Mg-S) rats received the same diet supplemented with 100 mmol Mg/kg feed. Following sacrifice, isolated working hearts were subjected to 30-, 40-, or 60-min global ischemia and 30-min reperfusion. Postischemic production of free radicals was monitored using electron spin resonance (ESR) spectroscopy and spin trapping with -phenyl-N-tert butylnitrone (PBN, 3 mM final); preischemic and postischemic effluent samples were collected and then extracted with toluene. PBN/alkoxyl adduct(s) (PBN/RO·; H = 1.93 G,N = 13.63 G) were the dominant signals detected in untreated Mg-S and Mg-D postischemic hearts, with comparably higher signal intensities observed for the Mg-D group following any ischemic duration. Time courses of postischemic PBN/RO· detection were biphasic for both groups (maxima: 2–4 and 8.5–12.5 min), and linear relationships between the extent of PBN/RO· production and the severity of both mechanical dysfunction and tissue injury were determined. Following each duration of ischemia, Mg-D hearts displayed greater levels of total PBN adduct production (1.7 –2.0 times higher) and lower recovery of cardiac function (42–48% less) than Mg-S hearts. Pretreating Mg-D rats with vitamin E prior to imposing 40-min ischemia/reperfusion, led to a 49% reduction in total PBN/RO· production, a 55% lower LDH release and a 2.2-fold improvement in functional recovery, compared to untreated Mg-D hearts. These data suggest that magnesium deficiency predisposes postischemic hearts to enhanced oxidative injury and functional loss, and that antioxidants may offer significant protection against pro-oxidant influence(s) of magnesium deficiency.  相似文献   
9.
1. When Triton-filled lysosomes from rat liver are incubated for up to 50min at 37 degrees C, pH7.4, in 0.25m-sucrose, no loss of latency of N-acetyl-beta-glucosaminidase or p-nitrophenyl phosphatase occurs unless the incubated lysosomes are cooled to approx. 15 degrees C. 2. It is suggested that a phase change takes place in the incubated lysosomal membranes on cooling; it starts at approx. 15 degrees C and probably is not complete at 0 degrees C. 3. Incubation of the lysosomes causes an increased potential for loss of latency of the lysosomal enzymes. This potential is not fully expressed at elevated temperature (e.g. 37 degrees C), but is expressed on cooling. 4. The increase at elevated temperature in potential for loss of latency exhibits biphasic kinetics, with an initial rapid phase followed by a slower phase, which is linear with respect to time. The extra loss of latency resulting from the rapid phase in proportional to the temperature of the incubation. 5. Arrhenius plots of the increase is potential for loss of latency during the slow phase for N-acetyl-beta-glucosaminidase and p-nitrophenyl phosphatase exhibit marked deviations from linearity beginning at approx. 15 degrees C. This suggests that the increase in potential for loss of latency is affected by a phase change that occurs around this temperature. 6. Activation energies for the increase in potential for loss of latency at and above 22 degrees C are 53.1+/-5.4kJ/mol (12.7+/-1.3kcal/mol) for N-acetyl-beta-glucosaminidase and 45.2+/-7.5kJ/mol (10.8+/-1.8kcal/mol) for p-nitrophenyl phosphatase. It is postulated that these energies reflect enzymic action, the products of which cause loss of latency to occur on cooling.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号