首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   4篇
  2018年   2篇
  2016年   5篇
  2015年   3篇
  2014年   4篇
  2013年   8篇
  2012年   5篇
  2011年   6篇
  2010年   5篇
  2009年   5篇
  2008年   6篇
  2007年   8篇
  2006年   6篇
  2005年   3篇
  2004年   8篇
  2003年   4篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有96条查询结果,搜索用时 218 毫秒
1.
2.
3.
The structural features of yeast phenylalanine transfer RNA are analyzed and documented in detail, based on atomic co-ordinates obtained from an extensive crystallographic refinement of the crystal structure of the molecule at 2.7 Å resolution (see preceding paper). We describe here: the relative orientation and the helicity of the base-paired stems; more definitive assignments of tertiary hydrogen bonds involving bases, riboses and phosphates; binding sites for magnesium hydrates, spermine and water; iriter-molecular contacts and base-stacking; flexibility of the molecule; conformational analysis of nucleotides in the structure. Among the more noteworthy features are a considerable irregularity in the helicity of the base-paired stems, a greater flexibility in the anticodon and aminoacyl acceptor arms, and a “coupling” among several conformational angles. The functional implications of these structural features are also discussed.  相似文献   
4.
Upon locating a suitable dung pile, ball-rolling dung beetles shape a piece of dung into a ball and roll it away in a straight line. This guarantees that they will not return to the dung pile, where they risk having their ball stolen by other beetles. Dung beetles are known to use celestial compass cues such as the sun, the moon and the pattern of polarised light formed around these light sources to roll their balls of dung along straight paths. Here, we investigate whether terrestrial landmarks have any influence on straight-line orientation in dung beetles. We find that the removal or re-arrangement of landmarks has no effect on the beetle’s orientation precision. Celestial compass cues dominate straight-line orientation in dung beetles so strongly that, under heavily overcast conditions or when prevented from seeing the sky, the beetles can no longer orient along straight paths. To our knowledge, this is the only animal with a visual compass system that ignores the extra orientation precision that landmarks can offer.  相似文献   
5.
6.
7.
The apposition compound eye of a nocturnal bee, the halictid Megalopta genalis, is described for the first time. Compared to the compound eye of the worker honeybee Apis mellifera and the diurnal halictid bee Lasioglossum leucozonium, the eye of M. genalis shows specific retinal and optical adaptations for vision in dim light. The major anatomical adaptations within the eye of the nocturnal bee are (1) nearly twofold larger ommatidial facets and (2) a 4–5 times wider rhabdom diameter than found in the diurnal bees studied. Optically, the apposition eye of M. genalis is 27 times more sensitive to light than the eyes of the diurnal bees. This increased optical sensitivity represents a clear optical adaptation to low light intensities. Although this unique nocturnal apposition eye has a greatly improved ability to catch light, a 27-fold increase in sensitivity alone cannot account for nocturnal vision at light intensities that are 8 log units dimmer than during daytime. New evidence suggests that additional neuronal spatial summation within the first optic ganglion, the lamina, is involved.B.G. is thankful for travel awards from the Royal Physiographic Society, the Per Westlings Fond, the Foundation of Dagny and Eilert Ekvall and the Royal Swedish Academy of Sciences. E.J.W. is grateful for the support of a Smithsonian Short-Term Research Fellowship, the Swedish Research Council, the Crafoord Foundation, the Wenner-Gren Foundation and the Royal Physiographic Society of Lund for their ongoing support  相似文献   
8.
Nocturnal vision and landmark orientation in a tropical halictid bee   总被引:1,自引:0,他引:1  
BACKGROUND: Some bees and wasps have evolved nocturnal behavior, presumably to exploit night-flowering plants or avoid predators. Like their day-active relatives, they have apposition compound eyes, a design usually found in diurnal insects. The insensitive optics of apposition eyes are not well suited for nocturnal vision. How well then do nocturnal bees and wasps see? What optical and neural adaptations have they evolved for nocturnal vision? RESULTS: We studied female tropical nocturnal sweat bees (Megalopta genalis) and discovered that they are able to learn landmarks around their nest entrance prior to nocturnal foraging trips and to use them to locate the nest upon return. The morphology and optics of the eye, and the physiological properties of the photoreceptors, have evolved to give Megalopta's eyes almost 30 times greater sensitivity to light than the eyes of diurnal worker honeybees, but this alone does not explain their nocturnal visual behavior. This implies that sensitivity is improved by a strategy of photon summation in time and in space, the latter of which requires the presence of specialized cells that laterally connect ommatidia into groups. First-order interneurons, with significantly wider lateral branching than those found in diurnal bees, have been identified in the first optic ganglion (the lamina ganglionaris) of Megalopta's optic lobe. We believe that these cells have the potential to mediate spatial summation. CONCLUSIONS: Despite the scarcity of photons, Megalopta is able to visually orient to landmarks at night in a dark forest understory, an ability permitted by unusually sensitive apposition eyes and neural photon summation.  相似文献   
9.
Lunar orientation in a beetle   总被引:1,自引:0,他引:1  
Many animals use the sun's polarization pattern to orientate, but the dung beetle Scarabaeus zambesianus is the only animal so far known to orientate using the million times dimmer polarization pattern of the moonlit sky. We demonstrate the relative roles of the moon and the nocturnal polarized-light pattern for orientation. We find that artificially changing the position of the moon, or hiding the moon's disc from the beetle's field of view, generally did not influence its orientation performance. We thus conclude that the moon does not serve as the primary cue for orientation. The effective cue is the polarization pattern formed around the moon, which is more reliable for orientation. Polarization sensitivity ratios in two photoreceptors in the dorsal eye were found to be 7.7 and 12.9, similar to values recorded in diurnal navigators. These results agree with earlier results suggesting that the detection and analysis of polarized skylight is similar in diurnal and nocturnal insects.  相似文献   
10.
Colour vision in diurnal and nocturnal hawkmoths   总被引:4,自引:0,他引:4  
Diurnal and nocturnal hawkmoths (Sphingidae, Lepidoptera) havethree spectral types of receptor sensitive to ultraviolet, blueand green light. As avid flower visitors and pollinators, theyuse olfactory and visual cues to find and recognise flowers.Moths of the diurnal species Macroglossum stellatarum and thenocturnal species Deilephila elpenor, Hyles lineata and Hylesgallii use and learn the colour of flowers. Nocturnal speciescan discriminate flowers at starlight intensities when humansand honeybees are colour-blind. M. stellatarum can use achromatic,intensity-related cues if colour cues are absent, and this isprobably also true for D. elpenor. Both species can recognisecolours even under a changed illumination colour.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号