首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   30篇
  国内免费   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   11篇
  2014年   7篇
  2013年   10篇
  2012年   5篇
  2011年   7篇
  2010年   6篇
  2009年   11篇
  2008年   11篇
  2007年   11篇
  2006年   10篇
  2005年   10篇
  2004年   9篇
  2003年   9篇
  2002年   3篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1987年   1篇
  1981年   1篇
  1968年   1篇
排序方式: 共有149条查询结果,搜索用时 31 毫秒
1.
Experimental allergic encephalomyelitis (EAE) is an autoimmune disease mediated by CD4+ T cells. Prior studies have established that monoclonal anti-CD4 antibodies can reverse EAE. To determine whether immunoglobulin isotype plays a role in the therapy of EAE with anti-CD4 antibody, an isotype switch variant family of the mouse IgG1 anti-rat CD4 antibody W3/25 was isolated with the fluorescence-activated cell sorter. The IgG1, IgG2b, and IgG2a W3/25 isotype variants all had identical binding capacities for rat CD4+ T cells. Although all three W3/25 isotypes showed some beneficial effects in the amelioration of EAE, the IgG1 and IgG2a W3/25 antibodies were superior to the IgG2b W3/25 in the treatment of EAE. Multiparameter fluorescence-activated cell sorter analysis of T cell subpopulations from treated rats showed that none of the antibodies of the W3/25 isotype switch variant family substantially depleted CD4+ target cells in vivo. These experiments demonstrate that immunoglobulin isotype is important in the monoclonal antibody therapy of autoimmune disease. They indicate that therapy of EAE may be successful without a major depletion of CD4+ lymphocytes. Immunotherapy may be optimized by selecting an appropriate isotype of a monoclonal antibody.  相似文献   
2.
WhileEscherichia coli is common as a commensal organism in the distal ileum and colon, the presence of colonization factors (CF) on pathogenic strains ofE. coli facilitates attachment of the organism to intestinal receptor molecules in a species- and tissue-specific fashion. After the initial adherence, colonization occurs, and the involvement of additional virulence determinants leads to illness. EnterotoxigenicE. coli (ETEC) is the most extensively studied of the five categories ofE. coli that cause diarrheal disease, and has the greatest impact on health worldwide. ETEC can be isolated from domestic animals and humans. The biochemistry, genetics, epidemiology, antigenic characteristics, and cell and receptor binding properties of ETEC have been extensively described. Another major category, enteropathogenicE. coli (EPEC), has virulence mechanisms, primarily effacement and cytoskeletal rearrangement of intestinal brush borders, that are distinct from ETEC. An EPEC CF receptor has been purified and characterized as a sialidated transmembrane glycoprotein complex directly attached to actin, thereby associating CF-binding with host-cell response. Three, additional categories ofE. coli diarrheal disease, their colonization factors and their host cell receptors are discussed. It appears that biofilms exist in the intestine in a manner similar to oral bacterial biofilms, and thatE. coli is part of these biofilms as both commensals and pathogens.Abbreviations CF colonization factor - CFA Colonization Factor Antigen - CS coli-surface-associated antigen - EAggEC enteroaggregativeE. coli - ECDD E. coli diarrheal disease - EHEC enterohemorrhagicE. coli - EIEC enteroinvasiveE. coli - EPEC enteropathogenicE. coli - ETEC enterotoxigenicE. coli - Gal galactose - GalNAc N-acetyl galactosamine - LT heat-labile toxin - NeuAc N-acetyl neuraminic acid - PCF Putative colonization factor - RBC red blood cells - SLT Shiga-like toxin - ST heat-stable toxin  相似文献   
3.
CTXφ is a filamentous phage that encodes cholera toxin, one of the principal virulence factors of Vibrio cholerae . CTXφ is unusual among filamentous phages because it can either replicate as a plasmid or integrate into the V. cholerae chromosome at a specific site. The CTXφ genome has two regions, the 'core' and RS2. Integrated CTXφ is frequently flanked by an element known as RS1 which is related to RS2. The nucleotide sequences of RS2 and RS1 were determined. These related elements contain three nearly identical open reading frames (ORFs), which in RS2 were designated rstR , rstA2 and rstB2 . RS1 contains an additional ORF designated rstC . Functional analyses indicate that rstA2 is required for CTXφ replication and rstB2 is required for CTXφ integration. The amino terminus of RstR is similar to the amino termini of other phage-encoded repressors, and RstR represses the expression of rstA2 . Although genes with related functions are clustered in the genome of CTXφ in a way similar to those for other filamentous phages, the CTXφ RS2-encoded gene products mediating replication, integration and repression appear to be novel.  相似文献   
4.
5.
We examined gazelle peripheral blood leucocytes using the α-Naphthyl acetate esterase (ANAE) staining technique (pH 5.8). Our purpose was to determine the percentage of ANAE positive lymphocytes. The proportion of ANAE positive T-lymphocytes was 72%. T-lymphocytes showed an ANAE positive reaction, but eosinophilic granulocytes and monocytes also showed a positive reaction. By contrast, no reaction was detected in B-lymphocytes, neutrophil granulocytes or platelets. The reaction observed in T-lymphocytes was a red-brown coloration, usually 1–2 granules, but enough granules to fill the cytoplasm were detected rarely. As a result of ANAE enzyme staining, we concluded that the staining technique can be used as a cytochemical marker for gazelle T-lymphocytes.  相似文献   
6.
7.
The genes encoding cholera toxin, the principal virulence factor of Vibrio cholerae, are part of the circular single-stranded DNA genome of CTXphi. In toxigenic V. cholerae strains, the CTXphi genome is typically found in integrated arrays of tandemly arranged CTX prophages. Infected cells that lack a chromosomal integration site harbour the CTXphi genome as a plasmid (pCTX). We studied the replication of pCTX and found several indications that this plasmid replicates via a rolling-circle (RC) mechanism. The initiation and termination sites for pCTX plus-strand DNA synthesis were mapped to a 22 bp sequence that contains inverted repeats and a nonanucleotide motif found in the plus-strand origins of several RC replicons. Furthermore, similar to other RC replicons, replication of plasmids containing duplicated pCTX origins resulted in the deletion of sequences between the two origins and the formation of a single chimeric origin. Our previous work revealed that CTX prophage arrays give rise to hybrid CTX virions that contain sequences derived from two adjacent prophages. We now report that the boundaries between the sequences contributed to virions by the upstream and the downstream prophages in an array correspond to the site at which synthesis of plus-strand pCTX DNA is initiated and terminated. These data support the model that plus-strand CTXphi DNA is generated from chromosomal prophages via a novel process analogous to RC replication.  相似文献   
8.
9.
The Vibrio cholerae SXT element encodes resistance to multiple antibiotics and is a conjugative, self-transmissible, and chromosomally integrating element (a constin). Excision and self-transfer of the SXT element require an element-encoded integrase. We now report that the SXT element can also mobilize the plasmids RSF1010 and CloDF13 in trans as well as chromosomal DNA in an Hfr-like manner. SXT element-mediated mobilization of plasmids and chromosomal DNA, unlike its self-transfer, is not dependent upon excision of the element from the chromosome. These results raise the possibility that the SXT element and other constins play a general role in horizontal gene transfer among gram-negative bacteria.  相似文献   
10.
In many bacteria, inhibition of cell wall synthesis leads to cell death and lysis. The pathways and enzymes that mediate cell lysis after exposure to cell wall-acting antibiotics (e.g. beta lactams) are incompletely understood, but the activities of enzymes that degrade the cell wall (‘autolysins’) are thought to be critical. Here, we report that Vibrio cholerae, the cholera pathogen, is tolerant to antibiotics targeting cell wall synthesis. In response to a wide variety of cell wall- acting antibiotics, this pathogen loses its rod shape, indicative of cell wall degradation, and becomes spherical. Genetic analyses revealed that paradoxically, V. cholerae survival via sphere formation required the activity of D,D endopeptidases, enzymes that cleave the cell wall. Other autolysins proved dispensable for this process. Our findings suggest the enzymes that mediate cell wall degradation are critical for determining bacterial cell fate - sphere formation vs. lysis – after treatment with antibiotics that target cell wall synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号