首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   2篇
  2021年   1篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
排序方式: 共有12条查询结果,搜索用时 468 毫秒
1.
To understand molecular responses of crustacean hemocytes to virus infection, we applied 2-DE proteomics approach to investigate altered proteins in hemocytes of Penaeus vannamei during Taura syndrome virus (TSV) infection. At 24 h postinfection, quantitative intensity analysis and nano-LC-ESI-MS/MS revealed 11 forms of 8 proteins that were significantly up-regulated, whereas 9 forms of 5 proteins were significantly down-regulated in the infected shrimps. These altered proteins play important roles in host defense (hemocyanin, catalase, carboxylesterase, transglutaminase, and glutathione transferase), signal transduction (14-3-3 zeta), carbohydrate metabolism (acetylglucosamine pyrophosphorylase), cellular structure and integrity (beta-tubulin, beta-actin, tropomyosin, and myosin), and ER-stress response (protein disulfide isomerase). Semiquantitative RT-PCR and Western blot analysis confirmed the upregulation of 14-3-3 at both mRNA and protein levels. Interestingly, several altered protein spots were identified as fragments of hemocyanin. Mass spectrometric analysis showed that the hemocyanin spots at acidic and basic regions represented the C- and N-terminal hemocyanin fragments, respectively. As three-quarters of C-terminal fragments were up-regulated, whereas two-thirds of N-terminal hemocyanin fragments were down-regulated, we therefore hypothesize that C- and N-terminal hemocyanin fragments may have differential roles in hemocytes. Further investigation of these data may lead to better understanding of the molecular responses of crustacean hemocytes to TSV infection.  相似文献   
2.
Both the disulphide bond (Cys192-Cys199) and the proline-rich motif (Pro193ProAsnPro196) in the long loop connecting the alpha4-alpha5 transmembrane hairpin of the Cry4Aa mosquito-larvicidal protein have been found to be unique among the Bacillus thuringiensis Cry delta-endotoxins. In this study, their structural requirements for larvicidal activity of the Cry4Aa toxin were investigated. C192A and C199A mutant toxins were initially generated and over-expressed in Escherichia coli cells as 130-kDa protoxins at levels comparable to that of the wild-type toxin. When their activities against Aedes aegypti larvae were determined, Escherichia coli cells expressing each mutant toxin retained the high-level toxicity. Further mutagenic analysis of the PPNP motif revealed that an almost complete loss in larvicidal activity was observed for the C199A/P193A double mutant, whereas a small reduction in toxicity was shown for the C199A/P194A and C199A/P196A mutants. Increasing the flexibility of the alpha4-alpha5 loop through C199A/P193G, C199A/P194G/P196A, C199A/P194A/P196G, and C199A/P194G/P196G mutations significantly decreased the larvicidal activity. Similar to the wild-type protoxin, all mutant toxins were structurally stable upon solubilisation and trypsin activation in carbonate buffer, pH 9.0. These findings are the first biological evidence for a structural function in larvicidal activity of the unique disulphide bridge as well as the proline-rich motif within the alpha4-alpha5 loop of the Cry4Aa toxin.  相似文献   
3.
Rickettsia felis, the etiologic agent of spotted fever, is maintained in cat fleas by vertical transmission and resembles other tick-borne spotted fever group rickettsiae. In the present study, we utilized an Ixodes scapularis-derived tick cell line, ISE6, to achieve isolation and propagation of R. felis. A cytopathic effect of increased vacuolization was commonly observed in R. felis-infected cells, while lysis of host cells was not evident despite large numbers of rickettsiae. Electron microscopy identified rickettsia-like organisms in ISE6 cells, and sequence analyses of portions of the citrate synthase (gltA), 16S rRNA, Rickettsia genus-specific 17-kDa antigen, and spotted fever group-specific outer membrane protein A (ompA) genes and, notably, R. felis conjugative plasmids indicate that this cultivatable strain (LSU) was R. felis. Establishment of R. felis (LSU) in a tick-derived cell line provides an alternative and promising system for the expansion of studies investigating the interactions between R. felis and arthropod hosts.  相似文献   
4.
The current model for the mechanism of action of the Bacillus thuringiensis Cry delta-endotoxins involves the penetration of the alpha4-alpha5 hairpin into the target midgut epithelial cell membranes, followed by pore formation. In this study, PCR-based mutagenesis was employed to identify a critical residue within the alpha4-alpha5 loop of the 130kDa Cry4A mosquito-larvicidal protein. Alanine-substitutions of two charged (Asp-198 and Asp-200) and four polar (Asn-190, Asn-195, Tyr-201 and Tyr-202) residues in the alpha4-alpha5 loop were performed. Like the wild-type, all of the mutant toxins were over-expressed as inclusion bodies in Escherichia coli. When E. coli cells expressing each mutant toxin were bioassayed against Aedes aegypti larvae, larvicidal activity was completely abolished for the substitution of only Tyr-202, while replacements at the other positions still retained a high level of toxicity. Further replacement of Tyr-202 with an aromatic side chain, phenylalanine, did not affect the toxicity. These results revealed a crucial role in toxin activity for the conserved aromatic residue at the 202 position within the alpha4-alpha5 loop of the Cry4A toxin.  相似文献   
5.
Rickettsia felis, the etiologic agent of spotted fever, is maintained in cat fleas by vertical transmission and resembles other tick-borne spotted fever group rickettsiae. In the present study, we utilized an Ixodes scapularis-derived tick cell line, ISE6, to achieve isolation and propagation of R. felis. A cytopathic effect of increased vacuolization was commonly observed in R. felis-infected cells, while lysis of host cells was not evident despite large numbers of rickettsiae. Electron microscopy identified rickettsia-like organisms in ISE6 cells, and sequence analyses of portions of the citrate synthase (gltA), 16S rRNA, Rickettsia genus-specific 17-kDa antigen, and spotted fever group-specific outer membrane protein A (ompA) genes and, notably, R. felis conjugative plasmids indicate that this cultivatable strain (LSU) was R. felis. Establishment of R. felis (LSU) in a tick-derived cell line provides an alternative and promising system for the expansion of studies investigating the interactions between R. felis and arthropod hosts.  相似文献   
6.
Achieving high-level expression of the Bacillus thuringiensis Cry4Aa mosquito-larvicidal protein was demonstrated. The 130-kDa Cry4Aa protoxin was overexpressed as an inclusion body in Escherichia coli under the control of the tac promoter together with the cry4Ba promoter. The solubility of the toxin inclusions in carbonate buffer, pH 10.0, was markedly enhanced at a cultivation temperature of 30 degrees C. Elimination of the tryptic cleavage site at Arg-235 in the loop between helices 5 and 6 still retained the high-level toxicity of E. coli cells expressing the Cry4Aa mutant against Aedes aegypti larvae. Trypsin digestion of the R235Q mutant protoxin produced a protease-resistant fragment of ca. 65kDa. A homogeneous product of the 65-kDa trypsin-treated R203Q protein was obtained after size-exclusion chromatography that would pave the way for the further crystallisation and X-ray crystallographic studies.  相似文献   
7.
Three-dimensional (3D) models for the 65-kDa activated Cry4A and Cry4B delta-endotoxins from Bacillus thuringiensis subsp. israelensis that are specifically toxic to mosquito-larvae were constructed by homology modeling, based on atomic coordinates of the Cry1Aa and Cry3Aa crystal structures. They were structurally similar to the known structures, both derived 3D models displayed a three-domain organization: the N-terminal domain (I) is a seven-helix bundle, while the middle and C-terminal domains are primarily comprise of anti-parallel beta-sheets. Circular dichroism spectroscopy confirmed the secondary structural contents of the two homology-based Cry4 structures. A structural analysis of both Cry4 models revealed the following: (a) Residues Arg-235 and Arg-203 are located in the interhelical 5/6 loop within the domain I of Cry4A and Cry4B, respectively. Both are solvent exposed. This suggests that they are susceptible to tryptic cleavage. (b) The unique disulphide bond, together with a proline-rich region within the long loop connecting alpha4 and alpha5 of Cry4A, were identified. This implies their functional significance for membrane insertion. (c) Significant structural differences between both models were found within domain II that may reflect their different activity spectra. Structural insights from this molecular modeling study would therefore increase our understanding of the mechanic aspects of these two closely related mosquito-larvicidal proteins.  相似文献   
8.
MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression in both plants and animals. miRNA genes have been implicated in a variety of important biological processes, including development, differentiation, apoptosis, fat metabolism, viral infection, and cancer. Similar to protein-coding messenger RNAs, miRNA expression varies between tissues and developmental states. To acquire a better understanding of global miRNA expression in tissues and cells, we have developed isolation, labeling, and array procedures to measure the relative abundance of all of the known human mature miRNAs. The method relies on rapid isolation of RNA species smaller than ~40 nucleotides (nt), direct and homogenous enzymatic labeling of the mature miRNAs with amine modified ribonucleotides, and hybridization to antisense DNA oligonucleotide probes. A thorough performance study showed that this miRNA microarray system can detect subfemtomole amounts of individual miRNAs from <1 mug of total RNA, with 98% correlation between independent replicates. The system has been applied to compare the global miRNA expression profiles in 26 different normal human tissues. This comprehensive analysis identified miRNAs that are preferentially expressed in one or a few related tissues and revealed that human adult tissues have unique miRNA profiles. This implicates miRNAs as important components of tissue development and differentiation. Taken together, these results emphasize the immense potential of microarrays for sensitive and high-throughput analysis of miRNA expression in normal and disease states.  相似文献   
9.
One proposed toxic mechanism of Bacillus thuringiensis Cry δ-endotoxins involves pore formation in target membranes by the α4-α5 transmembrane hairpin constituting their pore-forming domain. Here, nine selected charged and uncharged polar residues in the pore-lining α4 of the Cry4Aa mosquito-active toxin were substituted with Ala. All mutant toxins, i.e., D169A, R171A, Q173A, H178A, Y179A, H180A, Q182A, N183A and E187A, were over-expressed in Escherichia coli as 130-kDa protoxin inclusions at levels comparable to the wild-type toxin. Bioassays against Aedes aegypti larvae revealed that only H178A and H180A mutants displayed a drastic reduction in biotoxicity, albeit almost complete insolubility observed for H178A, but not for H180A inclusions. Further mutagenic analysis showed that replacements of His180 with charged (Arg, Lys, Asp, Glu), small uncharged polar (Ser, Cys) or small non-polar (Gly, Val) residues severely impaired the biotoxicity, unlike substitutions with relatively large uncharged (Asn, Gln, Leu) or aromatic (Phe, Tyr, Trp) residues. Similar to the trypsin-activated wild-type toxin, both bio-active and -inactive H180 mutants were still capable of releasing entrapped calcein from lipid vesicles and producing cation-selective channels with ~130-pS maximum conductance. Analysis of the Cry4Aa structure revealed the existence of a hydrophobic cavity near the critical His180 side-chain. Analysis of simulated structures revealed that His180-to-smaller residue conversions create a gap disrupting such cavity's hydrophobicity and hence structural arrangements of the α4-α5 hairpin. Altogether, our data disclose a critical involvement in Cry4Aa-biotoxicity of His180 exclusively present in the lumen-facing α4 for providing proper environment for the α4-α5 hairpin prior to membrane-inserted pore formation.  相似文献   
10.
A comparative proteomic analysis was employed to identify altered proteins in the yellow head virus (YHV) infected lymphoid organ (LO) of Penaeus monodon. At 24 h post-infection, the infected shrimps showed obvious signs of infection, while the control shrimps remained healthy. Two-dimensional electrophoresis of proteins extracted from the LO revealed significant alterations in abundance of several proteins in the infected group. Protein identification by MALDI-TOF MS and nanoLC-ESI-MS/MS revealed significant increase of transglutaminase, protein disulfide isomerase, ATP synthase beta subunit, V-ATPase subunit A, and hemocyanin fragments. A significant decrease was also identified for Rab GDP-dissociation inhibitor, 6-phosphogluconate dehydrogenase, actin, fast tropomyosin isoform, and hemolymph clottable protein. Some of these altered proteins were further investigated at the mRNA level using real-time RT-PCR, which confirmed the proteomic data. Identification of these altered proteins in the YHV-infected shrimps may provide novel insights into the molecular responses of P. monodon to YHV infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号