首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  2009年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
Symbiotic flagellates play a major role in the digestion of lignocellulose in the hindgut of lower termites. Many termite gut flagellates harbour a distinct lineage of bacterial endosymbionts, so-called Endomicrobia, which belong to the candidate phylum Termite Group 1. Using an rRNA-based approach, we investigated the phylogeny of Trichonympha , the predominant flagellates in a wide range of termite species, and of their Endomicrobia symbionts. We found that Trichonympha species constitute three well-supported clusters in the Parabasalia tree. Endomicrobia were detected only in the apical lineage (Cluster I), which comprises flagellates present in the termite families Termopsidae and Rhinotermitidae, but apparently absent in the basal lineages (Clusters II and III) consisting of flagellates from other termite families and from the wood-feeding cockroach, Cryptocercus punctulatus . The endosymbionts of Cluster I form a monophyletic group distinct from many other lineages of Endomicrobia and seem to have cospeciated with their flagellate host. The distribution pattern of the symbiotic pairs among different termite species indicates that cospeciation of flagellates and endosymbionts is not simply the result of a spatial separation of the flagellate lineages in different termite species, but that Endomicrobia are inherited among Trichonympha species by vertical transmission. We suggest extending the previously proposed candidatus name ' Endomicrobium trichonymphae ' to all Endomicrobia symbionts of Trichonympha species, and estimate that the acquisition by an ancestor of Trichonympha Cluster I must have occurred about 40–70 million years ago, long after the flagellates entered the termites.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号