首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
  2021年   1篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2002年   4篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
排序方式: 共有30条查询结果,搜索用时 312 毫秒
1.
Molecular and Cellular Biochemistry - Previously it was shown that for reduction of anxiety and stress of experimental animals, preventive handling seems to be one of the most effective methods....  相似文献   
2.
Vrbjar N  Pechánová O 《Life sciences》2002,71(15):1751-1761
The (Na,K)-ATPase is hypothesized to be involved in systemic vascular hypertension through its effects on smooth muscle reactivity and cardiac contractility. Investigating the kinetic properties of the above enzyme we tried to assess the molecular basis of alterations in transmembraneous efflux of Na(+) from cardiac cells in spontaneously hypertensive rats (SHR) with increased synthesis of nitric oxide (NO). In the investigated group of SHR the systolic blood pressure was increased by 64% and the synthesis of NO was increased by 60% in the heart. When activating the cardiac (Na,K)-ATPase with substrate, its activity was higher in SHR in the whole concentration range of ATP. Evaluation of kinetic parameters revealed an increase of the V(max) (by 37%) probably due to increased affinity of the ATP-binding site as indicated by the lowered K(m) value (by 38%) in SHR. During activation with Na(+), we observed no change in the enzyme activity below 10 mmol/l of NaCl whereas in the presence of higher concentrations of NaCl the (Na,K)-ATPase was stimulated. The value of V(max) increased (by 64%), however the K(Na) increased (by 106%), indicating an adaptation of the Na(+)-binding site of the enzyme to increased [Na(+)](i). Thus the (Na,K)-ATPase in our SHR group is able to extrude the excessive Na(+) from myocardial cells more effectively also at higher [Na(+)](i), while the enzyme from controls is unable to increase its activity further. This improvement of the (Na,K)-ATPase function is supported also by increased affinity of its ATP-binding site probably due to enhanced NO-synthesis.  相似文献   
3.
The role that Na,K-ATPase plays in Na+ and K+ antiport through the sarcolemma, in cation-homeostasis in cardiomyocytes as well as in excitation-contraction coupling and cell signalling in the myocardium is now widely recognized. It was its key importance for the cell membrane function that kept this enzyme intensively studied during the last three decades and finally brought to its discoverer the deserved Nobel Prize. Almost weekly are appearing new data concerning structure, function, regulation and role of the Na,K-ATPase in different physiological and pathological conditions. The special importance of the enzyme for heart function as well as the great amount of data that is concerned specifically with the heart Na,K-ATPase and accumulated since yet, started to call for setting them in order. The present paper updates basically important data on the cardiac Na,K-ATPase in relation to its specific properties, molecular mechanisms of function, mode of action, humoral and pharmacological modulation, adaptability, physiological role and clinical aspects.  相似文献   
4.
The aim of present study was the investigation of functional properties of the cardiac Na,K-ATPase in 16 weeks old male and female spontaneously hypertensive rats (SHR). The Na,K-ATPase activity in the presence of increasing concentrations of ATP, as well as Na(+) was lower in SHR of both genders, as compared to respective normotensive controls. Evaluation of kinetic parameters revealed a significant decrease of the maximum velocity (V(max)) in males (30% for ATP-activation, 40% for Na(+)-activation), as well as in females (24% for ATP, 29% for Na(+)), indicating a hypertension-induced diminution of the number of active enzyme molecules in cardiac sarcolemma. Insignificant changes were observed in the value of Michaelis-Menten constant (K(m)) in both cases. The concentration of sodium that gives half-maximal reaction velocity (K(Na)), increased by 38% in male and by 70% in female SHR. This impairment in the affinity of the Na(+)-binding site together with decreased number of active Na,K-ATPase molecules are probably responsible for the deteriorated enzyme-function in hearts of SHR. Direct comparison of SHR of both genders showed, that the enzyme from female hearts seems to be adapted better to hypertension as documented by its increased activity as a consequence of improved ability to bind and utilize ATP, as suggested by 32% decrease of K(m) value in females. In addition, the enzyme from female hearts is able to increase its activity (by 41%) in the presence of increasing sodium concentration even in the range where the enzyme from male hearts is already saturated.  相似文献   
5.
In the present study we examined the effect of dietary supplementation with the pyridoindole antioxidant stobadine on functional properties of the cardiac Na(+),K(+)-ATPase in diabetic rats. Diabetes lasting sixteen weeks which was induced by a single i.v. dose of streptozotocin (55 mg x kg(-1)) was followed by decrease in the enzyme activity. Evaluation of kinetic parameters revealed a statistically significant decrease in the maximum velocity (Vmax) (32% for ATP-activation, 33% for Na(+)-activation), indicating a diabetes-induced diminution of the number of active enzyme molecules in cardiac sarcolemma. The ATP-binding properties of the enzyme were not affected by diabetes as suggested by statistically insignificant changes in the value of Michaelis-Menten constant, K(M (ATP)). On the other hand, the affinity to sodium decreased as suggested by 54% increase in the K(M (Na+)) value. This impairment in the affinity of the Na(+)-binding site together with decreased number of active Na(+),K(+)-ATPase molecules are probably responsible for the deteriorated enzyme function in hearts of diabetic animals. Administration of stobadine to diabetic rats dramatically improved the function of cardiac Na(+),K(+)-ATPase with regard to Na(+)-handling, as documented by statistically significant elevation of Vmax by 66 and 47% decrease in K(M (Na+)). Our data suggest that stobadine may prevent the diabetes-induced deterioration of cardiac Na(+),K(+)-ATPase, thus enabling to preserve its normal function in regulation of intracellular homeostasis of Na(+) and K(+) ions.  相似文献   
6.
The Na(+),K(+)-ATPase is postulated to be involved in systemic vascular hypertension through its effects on smooth muscle reactivity and cardiac contractility. Investigating the kinetic properties of the above enzyme we tried to assess the molecular basis of alterations in transmembrane Na(+)-efflux from cardiac cells in spontaneously hypertensive rats (SHR). In the investigated group of SHR the systolic blood pressure and the heart weight were increased by 48% and by 60%, respectively. Upon activating the cardiac Na(+),K(+)-ATPase with substrate, its activity was lower in SHR in the whole concentration range of ATP. Evaluation of kinetic parameters revealed a decrease of the maximum velocity (Vmax) by 28% which was accompanied with lowered affinity of the ATP-binding site as indicated by the increased value of Michaelis-Menten constant (Km) by 354% in SHR. During activation with Na(+), we observed an inhibition of the enzyme in hearts from SHR at all tested Na(+) concentrations. The value of Vmax decreased by 37%, and the concentration of Na(+) that gives half maximal reaction velocity (KNa) increased by 98%. This impairment in the affinity of the Na(+)-binding site together with decreased affinity to ATP in the molecule of the Na(+),K(+)-ATPase are probably responsible for the deteriorated efflux of the excessive Na(+) from the intracellular space in hearts of SHR.  相似文献   
7.
The effect of the pyridoindole antioxidant stobadine on diabetes-induced changes of Na,K-ATPase, especially those concerning the utilisation of its substrate ATP, was investigated. Sixteen weeks of streptozotocin-induced diabetes (single i.v. dose of streptozotocin; 55 mg/kg) was followed by decrease in the enzyme activity. This effect was emphasised in the presence of higher concentrations of substrate and in the presence of 8 mmol x l(-1) ATP it represented 20%. It might be a consequence of altered functional properties of Na,K-ATPase as suggested by 20% decrease in the V(max) value along with decrease in the K(m) value by 20%. Administration of 0.05% (w/w) stobadine in the diet to diabetic rats improved the function of renal Na,K-ATPase with respect to utilisation of ATP as suggested by significant increase in the enzyme activity in the whole concentration range of ATP investigated as a consequence of V(max) elevation to the level comparable to absolute controls. In conclusion, stobadine may play a positive role in restoring the functional properties of renal Na,K-ATPase, especially concerning the utilisation of energy derived from hydrolysis of ATP, improving thus the maintenance of ionic homeostasis during diabetes.  相似文献   
8.
Ischemic preconditioning of the heart is referred as a manifest increase in tolerance of the myocardium to otherwise damaging ischemic insult, achieved by one or few consequent initial short exposures to ischemia, each followed by reperfusion of the ischemic area. Several mechanisms such as opening of collateral vessels, the action of catecholamines, inositol phosphates, G-proteins and/or adenosine; inhibition of mitochondrial ATPase, the effects of different endogenous protective substances like heat stress or shock proteins, etc., are believed to cooperate in the mechanism of induction of preconditioning or in maintaining its effect. The present study is an attempt to extend the present knowledge about preconditioning from two aspects: i.) the peculiarities of energy equilibrium in preconditioned myocardium including adaptation of cardiac sarcolemmal ATPases to ischemia and/or hypoxia, and ii) participation of a new endogenous cardioprotective substance in the mechanism of preconditioning. The energy equilibrium in preconditioning is characterized by adaptation of cardiac energy demands to the capacity of energy production and delivery decreased by anaerobiosis and is manifested by constant ratios between ATP, ADP, AMP and the sum of ADN. Principles are proposed that may enable a prediction and mathematical modelling of the balanced energetic state in the preconditioned myocardium. These principles are based on thermodynamics and involve besides others a more economic handling of ATP by sarcolemmal ATPases. The latter enzymes adapt themselves to lowered availability of ATP by decreasing besides their Vmax also their values of Km (increase in the affinity) for ATP and some of them even adjust their activation energy (the anaerobiosis-induced elevation of Ea.t. is missing). It was also revealed that during preconditioning several up to now not described shock proteins unlike proteins (also glycoproteins) are released from the myocardium into the coronary blood. When these proteins indicated as a HS fraction were isolated, partially purified and in concentrated form applied into the coronary circulation, they were capable to induce in preliminary experiments a cardioprotective effect resembling that of the ischemic preconditioning.  相似文献   
9.
Beta-adrenoceptor blocking agents may have, in addition to their primary action, also ancillary effects on the cell membrane. In the present paper the non-specific interaction of exaprolol with the ATPase systems in isolated rat heart sarcolemmal membranes was investigated. When preincubated with sarcolemmal membranes in vitro, exaprolol in concentrations below 10(-4) mol.l-1 had no significant effect on sarcolemmal Mg2+-, Ca2+- and (Na+ + K+)-ATPase activities. At exaprolol concentration of 10(-4) mol.l-1 the Mg2+- and Ca2+-ATPase activities became inhibited whereas the (Na+ + K+)-ATPase activity was markedly stimulated. A kinetic analysis of these interactions revealed a non-competitive inhibition of Mg2+- and Ca2+-ATPase. In the case of (Na+ + K+)-ATPase a synergistic type of stimulation characterized by an exaprolol-induced conversion of an essential sulfhydryl group in the active site of the enzyme to the more reactive [S-] form has been observed thus increasing the affinity of the enzyme to ATP. Exaprolol concentrations exceeding 5 X 10(-4) mol.l-1 induced an overall depression of the investigated enzyme activities.  相似文献   
10.
Previous studies showed that adverse effect of ionizing radiation on the cardiovascular system is beside other factors mostly mediated by reactive oxygen and nitrogen species, which deplete antioxidant stores. One of the structures highly sensitive to radicals is the Na,K-ATPase the main system responsible for extrusion of superfluous Na+ out of the cell which utilizes the energy derived from ATP. The aim of present study was the investigation of functional properties of cardiac Na,K-ATPase in 20-week-old male rats 6 weeks after γ-irradiation by a dose 25 Gy (IR). Irradiation induced decrease of systolic blood pressure from 133 in controls to 85 mmHg in IR group together with hypertrophy of right ventricle (RV) and hypotrophy of left ventricle (LV). When activating the cardiac Na,K-ATPase with substrate, its activity was lower in IR in the whole concentration range of ATP. Evaluation of kinetic parameters revealed a decrease of the maximum velocity (V max) by 40 % with no changes in the value of Michaelis–Menten constant (K m). During activation with Na+, we observed a decrease of the enzyme activity in hearts from IR at all tested Na+ concentrations. The value of V max decreased by 38 %, and the concentration of Na+ that gives half maximal reaction velocity (K Na) increased by 62 %. This impairment in the affinity of the Na+-binding site together with decreased number of active Na,K-ATPase molecules, as indicated by lowered V max values, are probably responsible for the deteriorated efflux of the excessive Na+ from the intracellular space in hearts of irradiated rats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号