首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2018年   1篇
  2008年   1篇
  2007年   3篇
排序方式: 共有5条查询结果,搜索用时 62 毫秒
1
1.
Ten years old patient with juvenile form of metachromatic leukodystrophy (MDL) is presented. Apart from standard magnetic resonance (MR) protocol, the diffusion weighted sequence was performed and apparent diffusion coefficient (ADC) map was constructed. The cause of restricted diffusion is considered to be the deposits of metachromatic substance in the intercellular space, apparently similar reason for decrease of speed of diffusion in other storage diseases.  相似文献   
2.
To enhance glioblastoma (GB) marker discovery, we compared gene expression in GB with human normal brain (NB) by accessing the SAGE Genie web site and compared the results with published data. Nine GB and five NB SAGE libraries were analyzed using the Digital Gene Expression Displayer (DGED); the results of DGED were tested by Northern blot analysis and RT-PCR of arbitrarily selected genes. Review of available data from the articles on gene expression profiling by microarray-based hybridization showed as few as 35 overlapped genes with increased expression in GB. Some of them were identified in four articles, but most genes were identified in three or even in two investigations. Some differences were also found between SAGE results of GB analysis. The Digital Gene Expression Displayer approach revealed 676 genes differentially expressed in GB vs. NB with cutoff ratio: twofold change and P ≤ 05. Differential expression of selected genes obtained by DGED was confirmed by Northern analysis and RT-PCR. Altogether, only 105 of 955 genes presented in published investigations were among the genes obtained by DGED. Comparison of the results obtained by microarrays and SAGE is very complicated because the authors present only the most prominent differentially expressed genes. However, even available data give quite poor overlapping of genes revealed by microarrays. Some differences between results obtained by SAGE in different investigations can be explained by high dependence on the statistical methods used. As for now, the best solution to search for molecular tumor markers is to compare all available results and to select only those genes where significant expression in tumors combined with very low expression in normal tissues was reproduced in several articles. One hundred five differentially expressed genes, common to both methods, can be included in the list of candidates for the molecular typing of GBs. Some genes, encoded cell surface or extracellular proteins may be useful for targeting gliomas with antibody-based therapy. The text was submitted by the authors in English.  相似文献   
3.
Canonical inflammasomes are multiprotein complexes that can activate both caspase-1 and caspase-8. Caspase-1 drives rapid lysis of cells by pyroptosis and maturation of interleukin (IL)-1β and IL-18. In caspase-1-deficient cells, inflammasome formation still leads to caspase-3 activation and slower apoptotic death, dependent on caspase-8 as an apical caspase. A role for caspase-8 directly upstream of caspase-1 has also been suggested, but here we show that caspase-8-deficient macrophages have no defect in AIM2 inflammasome-mediated caspase-1 activation, pyroptosis, and IL-1β cleavage. In investigating the inflammasome-induced apoptotic pathway, we previously demonstrated that activated caspase-8 is essential for caspase-3 cleavage and apoptosis in caspase-1-deficient cells. However, here we found that AIM2 inflammasome-initiated caspase-3 cleavage was maintained in Ripk3?/? Casp8?/? macrophages. Gene knockdown showed that caspase-1 was required for the caspase-3 cleavage. Thus inflammasomes activate a network of caspases that can promote both pyroptotic and apoptotic cell death. In cells where rapid pyroptosis is blocked, delayed inflammasome-dependent cell death could still occur due to both caspase-1- and caspase-8-dependent apoptosis. Initiation of redundant cell death pathways is likely to be a strategy for coping with pathogen interference in death processes.  相似文献   
4.
5.
To enhance glioblastoma (GB) marker discovery we compared gene expression in GB with human normal brain (NB) by accessing SAGE Genie web site and compared obtained results with published data. Nine GB and five NB SAGE-libraries were analyzed using the Digital Gene Expression Displayer (DGED), the results of DGED were tested by Northern blot analysis and RT-PCR of arbitrary selected genes. Review of available data from the articles on gene expression profiling by microarray-based hybridization showed as few as 35 overlapped genes with increased expression in GB. Some of them were identified in four articles, but most genes in three or even in two investigations. There was found also some differences between SAGE results of GB analysis. Digital Gene Expression Displayer approach revealed 676 genes differentially expressed in GB vs. NB with cut-off ratio: twofold change and P < or = 0.05. Differential expression of selectedgenes obtained by DGED was confirmed by Northern analysis and RT-PCR. Altogether, only 105 of 955 genes presented in published investigations were among the genes obtained by DGED. Comparison of the results obtained by microarrays and SAGE is very complicated because authors present only the most prominent differentially expressed genes. However, even available data give quite poor overlapping of genes revealed by microarrays. Some differences between results obtained by SAGE in different investigations can be explained by high dependence on the statistical methods used. As for now, the best solution to search for molecular tumor markers is to compare all available results and to select only those genes, which significant expression in tumor combined with very low expression in normal tissues was reproduced in several articles. 105 differentially expressed genes, common to both methods, can be included in the list of candidates for the molecular typing of GBs. Some genes, encoded cell surface or extra-cellular proteins may be useful for targeting gliomas with antibody-based therapy.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号