首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   3篇
  2024年   1篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   8篇
  2012年   11篇
  2011年   6篇
  2010年   5篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
  2006年   1篇
  2005年   3篇
  2003年   1篇
  2001年   1篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
1.
Recent studies from mountainous areas of small spatial extent (<2500 km2) suggest that fine‐grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate‐change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine‐grained thermal variability across a 2500‐km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000‐m2 units (community‐inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1‐km2 units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1‐km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100‐km2 units. Ellenberg temperature indicator values in combination with plant assemblages explained 46–72% of variation in LmT and 92–96% of variation in GiT during the growing season (June, July, August). Growing‐season CiT range within 1‐km2 units peaked at 60–65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0.84 °C) and 2.68 °C (SD = 1.26 °C) within the flattest and roughest units respectively. Complex interactions between topography‐related variables and latitude explained 35% of variation in growing‐season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing‐season CiT within 100‐km2 units was, on average, 1.8 times greater (0.32 °C km?1) than spatial turnover in growing‐season GiT (0.18 °C km?1). We conclude that thermal variability within 1‐km2 units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.  相似文献   
2.
The ecology of small rodent food selection is poorly understood, as mammalian herbivore food selection theory has mainly been developed by studying ungulates. Especially, the effect of food availability on food selection in natural habitats where a range of food items are available is unknown. We studied diets and selectivity of grey-sided voles (Myodes rufocanus) and tundra voles (Microtus oeconomus), key herbivores in European tundra ecosystems, using DNA metabarcoding, a novel method enabling taxonomically detailed diet studies. In order to cover the range of food availabilities present in the wild, we employed a large-scale study design for sampling data on food availability and vole diets. Both vole species had ingested a range of plant species and selected particularly forbs and grasses. Grey-sided voles also selected ericoid shrubs and tundra voles willows. Availability of a food item rarely affected its utilization directly, although seasonal changes of diets and selection suggest that these are positively correlated with availability. Moreover, diets and selectivity were affected by availability of alternative food items. These results show that the focal sub-arctic voles have diverse diets and flexible food preferences and rarely compensate low availability of a food item with increased searching effort. Diet diversity itself is likely to be an important trait and has previously been underrated owing to methodological constraints. We suggest that the roles of alternative food item availability and search time limitations for small rodent feeding ecology should be investigated.

Nomenclature

Annotated Checklist of the Panarctic Flora (PAF), Vascular plants. Available at: http://nhm2.uio.no/paf/, accessed 15.6.2012.  相似文献   
3.

Background  

The aim of the study was to investigate urine matrix metalloproteinase (MMP-2 and -9) activity, alkaline phosphatase/creatinine (U-AP/Cr) and gamma-glutamyl-transpeptidase/creatinine (U-GGT/Cr) ratios, glucose concentration, and urine protein/creatinine (U-Prot/Cr) ratio and to compare data with plasma MMP-2 and -9 activity, cystatin-C and creatinine concentrations in colic horses and healthy controls. Horses with surgical colic (n = 5) were compared to healthy stallions (n = 7) that came for castration. Blood and urine samples were collected. MMP gelatinolytic activity was measured by zymography.  相似文献   
4.
Productive tundra plant communities composed of a variety of fast growing herbaceous and woody plants are likely to attract mammalian herbivores. Such vegetation is likely to respond to different-sized herbivores more rapidly than currently acknowledged from the tundra. Accentuated by currently changing populations of arctic mammals there is a need to understand impacts of different-sized herbivores on the dynamics of productive tundra plant communities. Here we assess the differential effects of ungulate (reindeer) and small rodent herbivores (voles and lemmings) on high productive tundra vegetation. A spatially extensive exclosure experiment was run for three years on river sediment plains along two river catchments in low-arctic Norway. The river catchments were similar in species pools but differed in species abundance composition of both plants and vertebrate herbivores. Biomass of forbs, deciduous shrubs and silica-poor grasses increased by 40–50% in response to release from herbivory, whereas biomass of silica-rich grasses decreased by 50–75%. Hence both additive and compensatory effects of small rodents and reindeer exclusion caused these significant changes in abundance composition of the plant communities. Changes were also rapid, evident after only one growing season, and are among the fastest and strongest ever documented in Arctic vegetation. The rate of changes indicates a tight link between the dynamics of productive tundra vegetation and both small and large herbivores. Responses were however not spatially consistent, being highly different between the catchments. We conclude that despite similar species pools, variation in plant species abundance and herbivore species dynamics give different prerequisites for change.  相似文献   
5.
The human colon contains a diverse microbial population which contributes to degradation and metabolism of food components. Drug metabolism in the colon is generally poorly understood. Metabolomics techniques and in vitro colon models are now available which afford detailed characterization of drug metabolites in the context of colon metabolism. The aim of this work was to identify novel drug metabolites of Simvastatin (SV) by using an anaerobic human in vitro colon model at body temperature coupled with systems biology platform, excluding the metabolism of the host liver and intestinal epithelia. Comprehensive two-dimensional gas chromatography with a time-of-flight mass spectrometry (GC×GC-TOFMS) was used for the metabolomic analysis. Metabolites showing the most significant differences in the active faecal suspension were elucidated in reference with SV fragmentation and compared with controls: inactive suspension or buffer with SV, or with active suspension alone. Finally, time courses of selected metabolites were investigated. Our data suggest that SV is degraded by hydrolytic cleavage of methylbutanoic acid from the SV backbone. Metabolism involves demethylation of dimethylbutanoic acid, hydroxylation/dehydroxylation and β-oxidation resulting in the production of 2-hydroxyisovaleric acid (3-methyl-2-hydroxybutanoic acid), 3-hydroxybutanoic acid and lactic acid (2-hydroxypropanoic acid), and finally re-cyclisation of heptanoic acid (possibly de-esterified and cleaved methylpyranyl arm) to produce cyclohexanecarboxylic acid. Our study elucidates a pathway of colonic microbial metabolism of SV as well as demonstrates the applicability of the in vitro colon model and metabolomics to the discovery of novel drug metabolites from drug response profiles.  相似文献   
6.
Maltose and maltotriose are the major sugars in brewer's wort. Brewer's yeasts contain multiple genes for maltose transporters. It is not known which of these express functional transporters. We correlated maltose transport kinetics with the genotypes of some ale and lager yeasts. Maltose transport by two ale strains was strongly inhibited by other alpha-glucosides, suggesting the use of broad substrate specificity transporters, such as Agt1p. Maltose transport by three lager strains was weakly inhibited by other alpha-glucosides, suggesting the use of narrow substrate specificity transporters. Hybridization studies showed that all five strains contained complete MAL1, MAL2, MAL3, and MAL4 loci, except for one ale strain, which lacked a MAL2 locus. All five strains also contained both AGT1 (coding a broad specificity alpha-glucoside transporter) and MAL11 alleles. MPH genes (maltose permease homologues) were present in the lager but not in the ale strains. During growth on maltose, the lager strains expressed AGT1 at low levels and MALx1 genes at high levels, whereas the ale strains expressed AGT1 at high levels and MALx1 genes at low levels. MPHx expression was negligible in all strains. The AGT1 sequences from the ale strains encoded full-length (616 amino acid) polypeptides, but those from both sequenced lager strains encoded truncated (394 amino acid) polypeptides that are unlikely to be functional transporters. Thus, despite the apparently similar genotypes of these ale and lager strains revealed by hybridization, maltose is predominantly carried by AGT1-encoded transporters in the ale strains and by MALx1-encoded transporters in the lager strains.  相似文献   
7.

Background

While beneficial health effects of fish and fish oil consumption are well documented, the incorporation of n-3 polyunsaturated fatty acids in plasma lipid classes is not completely understood. The aim of this study was to investigate the effect of fish oil supplementation on the plasma lipidomic profile in healthy subjects.

Methodology/Principal Findings

In a double-blinded randomized controlled parallel-group study, healthy subjects received capsules containing either 8 g/d of fish oil (FO) (1.6 g/d EPA+DHA) (n = 16) or 8 g/d of high oleic sunflower oil (HOSO) (n = 17) for seven weeks. During the first three weeks of intervention, the subjects completed a fully controlled diet period. BMI and total serum triglycerides, total-, LDL- and HDL-cholesterol were unchanged during the intervention period. Lipidomic analyses were performed using Ultra Performance Liquid Chromatography (UPLC) coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (QTOFMS), where 568 lipids were detected and 260 identified. Both t-tests and Multi-Block Partial Least Square Regression (MBPLSR) analysis were performed for analysing differences between the intervention groups. The intervention groups were well separated by the lipidomic data after three weeks of intervention. Several lipid classes such as phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine, sphingomyelin, phosphatidylserine, phosphatidylglycerol, and triglycerides contributed strongly to this separation. Twenty-three lipids were significantly decreased (FDR<0.05) in the FO group after three weeks compared with the HOSO group, whereas fifty-one were increased including selected phospholipids and triglycerides of long-chain polyunsaturated fatty acids. After seven weeks of intervention the two intervention groups showed similar grouping.

Conclusions/Significance

In healthy subjects, fish oil supplementation alters lipid metabolism and increases the proportion of phospholipids and triglycerides containing long-chain polyunsaturated fatty acids. Whether the beneficial effects of fish oil supplementation may be explained by a remodeling of the plasma lipids into phospholipids and triglycerides of long-chain polyunsaturated fatty acids needs to be further investigated.

Trial Registration

ClinicalTrials.gov NCT01034423  相似文献   
8.
Lipidomics: a new window to biomedical frontiers   总被引:1,自引:0,他引:1  
Lipids are a highly diverse class of molecules with crucial roles in cellular energy storage, structure and signaling. Lipid homeostasis is fundamental to maintain health, and lipid defects are central to the pathogenesis of important and devastating diseases. Newly emerging advances have facilitated the development of so-called lipidomics technologies and offer an opportunity to elucidate the mechanisms leading to disease. Furthermore, these advances also provide the tools to unravel the complexity of the 'allostatic forces' that allow maintenance of normal cellular/tissue phenotypes through the application of bioenergetically inefficient adaptive mechanisms. An alternative strategy is to focus on tissues with limited allostatic capacity, such as the eye, that could be used as readouts of metabolic stress over time. Identification of these allostatic mechanisms and pathological 'scares' might provide a window to unknown pathogenic mechanisms, as well as facilitate identification of early biomarkers of disease.  相似文献   
9.
We have developed a novel instrument platform, GenomEra, for small-scale analysis of nucleic acids. The platform combines a rapid thermal cycler, an integrated time-resolved fluorescence measurement unit, and user-friendly software for the analysis of results. Disposable low-cost plastic reaction vessels are designed specifically for the instrument and contain all of the assay-specific reagents in dry form. The appropriate assay protocol is specified on barcodes printed under the vessels and is automatically initiated by the software. Detection is based on the use of sequence-specific probes labeled with intrinsically fluorescent europium or terbium chelates and complementary quencher probes, which enable sensitive, homogeneous closed-tube assays without the risk of carryover contamination. The detection limit of the instrument (background + 3 SD) is approximately 20 pmol/L for both chelates with a dynamic range of nearly four orders of magnitude. The functionality of the platform is demonstrated with a dual-label homogeneous polymerase chain reaction (PCR) assay for the detection of Salmonella using a Magda CA Salmonella assay kit. An internal amplification control is included in each reaction to eliminate false negative results caused by PCR inhibition. Qualitative assay results are automatically interpreted by the software and are available 45 min after sample addition.  相似文献   
10.
Spinal cord injuries (SCIs) are devastating conditions of the central nervous system (CNS) for which there are no restorative therapies. Neuronal death at the primary lesion site and in remote regions that are functionally connected to it is one of the major contributors to neurological deficits following SCI.Disruption of autophagic flux induces neuronal death in many CNS injuries, but its mechanism and relationship with remote cell death after SCI are unknown. We examined the function and effects of the modulation of autophagy on the fate of axotomized rubrospinal neurons in a rat model of spinal cord dorsal hemisection (SCH) at the cervical level. Following SCH, we observed an accumulation of LC3-positive autophagosomes (APs) in the axotomized neurons 1 and 5 days after injury. Furthermore, this accumulation was not attributed to greater initiation of autophagy but was caused by a decrease in AP clearance, as demonstrated by the build-up of p62, a widely used marker of the induction of autophagy. In axotomized rubrospinal neurons, the disruption of autophagic flux correlated strongly with remote neuronal death and worse functional recovery. Inhibition of AP biogenesis by 3-methyladenine (3-MA) significantly attenuated remote degeneration and improved spontaneous functional recovery, consistent with the detrimental effects of autophagy in remote damage after SCH. Collectively, our results demonstrate that autophagic flux is blocked in axotomized neurons on SCI and that the inhibition of AP formation improves their survival. Thus, autophagy is a promising target for the development of therapeutic interventions in the treatment of SCIs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号