首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   2篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   7篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  2004年   5篇
  1999年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
1.
2.
3.
The three-dimensional (3D) architecture of the cell nucleus plays an important role in protein dynamics and in regulating gene expression. However, protein dynamics within the 3D nucleus are poorly understood. Here, we present, to our knowledge, a novel combination of 1) single-objective based light-sheet microscopy, 2) photoconvertible proteins, and 3) fluorescence correlation microscopy, to quantitatively measure 3D protein dynamics in the nucleus. We are able to acquire >3400 autocorrelation functions at multiple spatial positions within a nucleus, without significant photobleaching, allowing us to make reliable estimates of diffusion dynamics. Using this tool, we demonstrate spatial heterogeneity in Polymerase II dynamics in live U2OS cells. Further, we provide detailed measurements of human-Yes-associated protein diffusion dynamics in a human gastric cancer epithelial cell line.  相似文献   
4.
5.
In these last two decades , fluorescent proteins (FPs) have become highly valued imaging tools for cell biology, owing to their compatibility with living samples, their low levels of invasiveness and the possibility to specifically fuse them to a variety of proteins of interest. Remarkably, the recent development of phototransformable fluorescent proteins (PTFPs) has made it possible to conceive optical imaging experiments that were unimaginable only a few years ago. For example, it is nowadays possible to monitor intra- or intercellular trafficking, to optically individualize single cells in tissues or to observe single molecules in live cells. The tagging specificity brought by these genetically encoded highlighters leads to constant progress in the engineering of increasingly powerful, versatile and non-cytotoxic FPs. This review is focused on the recent developments of PTFPs and highlights their contribution to studies within cells, tissues and even living organisms. The aspects of single-molecule localization microscopy, intracellular tracking of photoactivated molecules, applications of PTFPs in biotechnology/optobiology and complementarities between PTFPs and other microscopy techniques are particularly discussed.  相似文献   
6.
Screening of 26 gut peptides for their ability to inhibit growth of human colon cancer HT29-D4 cells grown in 10% fetal calf serum identified orexin-A and orexin-B as anti-growth factors. Upon addition of either orexin (1 microM), suppression of cell growth was total after 24 h and >70% after 48 or 72 h, with an EC(50) of 5 nm peptide. Orexins did not alter proliferation but promoted apoptosis as demonstrated by morphological changes in cell shape, DNA fragmentation, chromatin condensation, cytochrome c release into cytosol, and activation of caspase-3 and caspase-7. The serpentine G protein-coupled orexin receptor OX(1)R but not OX(2)R was expressed in HT29-D4 cells and mediated orexin-induced Ca(2+) transients in HT29-D4 cells. The expression of OX(1)R and the pro-apoptotic effects of orexins were also indicated in other colon cancer cell lines including Caco-2, SW480, and LoVo but, most interestingly, not in normal colonic epithelial cells. The role of OX(1)R in mediating apoptosis was further demonstrated by transfecting Chinese hamster ovary cells with OX(1)R cDNA, which conferred the ability of orexins to promote apoptosis. A neuroblastoma cell line SK-N-MC, which expresses OX(1)R, also underwent growth suppression and apoptosis upon treatment with orexins. Promotion of apoptosis appears to be an intrinsic property of OX(1)R regardless of the cell type where it is expressed. In conclusion, orexins, acting at native or recombinant OX(1)R, are pro-apoptotic peptides. These findings add a new dimension to the biological activities of these neuropeptides, which may have important implications in health and disease, in particular colon cancer.  相似文献   
7.
8.
Some sulfate-reducing and microaerophilic bacteria rely on the enzyme superoxide reductase (SOR) to eliminate the toxic superoxide anion radical (O2*-). SOR catalyses the one-electron reduction of O2*- to hydrogen peroxide at a nonheme ferrous iron center. The structures of Desulfoarculus baarsii SOR (mutant E47A) alone and in complex with ferrocyanide were solved to 1.15 and 1.7 A resolution, respectively. The latter structure, the first ever reported of a complex between ferrocyanide and a protein, reveals that this organo-metallic compound entirely plugs the SOR active site, coordinating the active iron through a bent cyano bridge. The subtle structural differences between the mixed-valence and the fully reduced SOR-ferrocyanide adducts were investigated by taking advantage of the photoelectrons induced by X-rays. The results reveal that photo-reduction from Fe(III) to Fe(II) of the iron center, a very rapid process under a powerful synchrotron beam, induces an expansion of the SOR active site.  相似文献   
9.
AMP-activated protein kinase α (AMPKα) is a key regulator of energy balance in many model species during hypoxia. In a marine bivalve, the Pacific oyster Crassostrea gigas, we analyzed the protein content of adductor muscle in response to hypoxia during 6 h. In both smooth and striated muscles, the amount of full-length AMP-activated protein kinase α (AMPKα) remained unchanged during hypoxia. However, hypoxia induced a rapid and muscle-specific response concerning truncated isoforms of AMPKα. In the smooth muscle, a truncated isoform of AMPKα was increased from 1 to 6 h of hypoxia, and was linked with accumulation of AKT kinase, a key enzyme of the insulin signaling pathway which controls intracellular glucose metabolism. In this muscle, aerobic metabolism was maintained over the 6 h of hypoxia, as mitochondrial citrate synthase activity remained constant. In contrast, in striated muscle, hypoxia did not induce any significant modification of neither truncated AMPKα nor AKT protein content, and citrate synthase activity was altered after 6 h of hypoxia. Together, our results demonstrate that hypoxia response is specific to muscle type in Pacific oyster, and that truncated AMPKα and AKT proteins might be involved in maintaining aerobic metabolism in smooth muscle. Such regulation might occur in vivo during tidal intervals that cause up to 6 h of hypoxia.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号