首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
  2014年   1篇
  2013年   2篇
  2012年   5篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  1997年   1篇
  1996年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有25条查询结果,搜索用时 78 毫秒
1.
A Kazal type serine proteinase SPIPm2 is abundantly expressed in the hemocytes and shown to be involved in innate immune response against white spot syndrome virus (WSSV) in Penaeus monodon. The SPIPm2 is expressed and stored in the granules in the cytoplasm of semigranular and granular but not the hyaline hemocytes. Upon WSSV challenge and progression of infection, the SPIPm2 was secreted readily from the semigranular and granular hemocytes. The more they secreted the SPIPm2, the less they were distinguishable from the hyaline cells. The WSSV-infected cells were either semigranular or granular hemocytes or both and depleted of SPIPm2. The rSPIPm2 was able to temporarily and dose-dependently neutralize the WSSV and protect the hemocytes from viral infection judging from the substantially less expression of WSSV late gene VP28. The antiviral activity was very likely due to the binding of SPIPm2 to the components of viral particle and hemocyte cell membrane.  相似文献   
2.
3.
Enterocins NKR-5-3A, B, C, and D were purified from the culture supernatant of Enterococcus faecium NKR-5-3 and characterized. Among the four purified peptides, enterocin NKR-5-3A (5242.3 Da) was identical to brochocin A, produced by Brochothrix campestris ATCC 43754, in mature peptides, and its putative synergistic peptide, enterocin NKR-5-3Z, was found to be encoded in ent53Z downstream of ent53A, encoding enterocin NKR-5-3A. Enterocin NKR-5-3B (6316.4 Da) showed a broad antimicrobial spectrum, and enterocin NKR-5-3C (4512.8 Da) showed high activity against Listeria. Enterocin NKR-5-3D (2843.5 Da), showing high homology to an inducing peptide produced by Lactobacillus sakei 5, induced the production of the enterocins. The enterocins showed different antimicrobial spectra and intensities. E. faecium NKR-5-3 concomitantly produced enterocins NKR-5-3A, B, C, and D which probably belong to different classes of bacteriocins. Furthermore, NKR-5-3 production was induced by enterocin NKR-5-3D.  相似文献   
4.
The structure of enterocin NKR-5-3C, an anti-listerial bacteriocin produced by a multiple bacteriocin producer, Enterococcus faecium NKR-5-3, was determined. Enterocin NKR-5-3C is a novel class IIa bacteriocin that possesses an YGNGL motif sequence and two disulfide bridges in its structure. It is encoded on gene ent53C together with an 18-amino-acid-residue double glycine leader peptide.  相似文献   
5.
The fermentation process for a poly (L-lactide) (PLA)-degrading enzyme production by a newly isolate of thermophilic PLA-degrading Actinomadura sp. T16-1 was investigated. The strain produced 33.9 U/mL of enzyme activity after cultivation at 50°C under shaking of 150 rpm for 96 h in a medium consisting of (w/v) 0.05% PLA film, 0.2% gelatin, 0.4% (NH4)2SO4, 0.4% K2HPO4, 0.2 % KH2PO4, and 0.02% MgSO4 · 7H2O. The optimal concentration of PLA film and gelatin obtained by response surface methodology (RSM) for the highest production of PLA-degrading enzyme was 0.035% (w/v) and 0.238% (w/v), respectively. Under these conditions, the model predicted 40.4 U/mL of PLA-degrading activity and the verification of the optimization showed 44.6 U/mL of PLA-degrading enzymatic activity in the flasks experiment. The maximum PLA-degrading activity reached 150 U/mL within 72 h cultivation in the 3-L airlift fermenter.  相似文献   
6.
Enterococcus faecium NKR-5-3, isolated from Thai fermented fish, is characterized by the unique ability to produce five bacteriocins, namely, enterocins NKR-5-3A, -B, -C, -D, and -Z (Ent53A, Ent53B, Ent53C, Ent53D, and Ent53Z). Genetic analysis with a genome library revealed that the bacteriocin structural genes (enkA [ent53A], enkC [ent53C], enkD [ent53D], and enkZ [ent53Z]) that encode these peptides (except for Ent53B) are located in close proximity to each other. This NKR-5-3ACDZ (Ent53ACDZ) enterocin gene cluster (approximately 13 kb long) includes certain bacteriocin biosynthetic genes such as an ABC transporter gene (enkT), two immunity genes (enkIaz and enkIc), a response regulator (enkR), and a histidine protein kinase (enkK). Heterologous-expression studies of enkT and ΔenkT mutant strains showed that enkT is responsible for the secretion of Ent53A, Ent53C, Ent53D, and Ent53Z, suggesting that EnkT is a wide-range ABC transporter that contributes to the effective production of these bacteriocins. In addition, EnkIaz and EnkIc were found to confer self-immunity to the respective bacteriocins. Furthermore, bacteriocin induction assays performed with the ΔenkRK mutant strain showed that EnkR and EnkK are regulatory proteins responsible for bacteriocin production and that, together with Ent53D, they constitute a three-component regulatory system. Thus, the Ent53ACDZ gene cluster is essential for the biosynthesis and regulation of NKR-5-3 enterocins, and this is, to our knowledge, the first report that demonstrates the secretion of multiple bacteriocins by an ABC transporter.  相似文献   
7.
An 8.8-kb plasmid (pND302) was identified in Lactococcus lactis spp lactis M71 which encodes cadmium resistance (CdR). Most of the commercial lactococcal strains tested were sensitive to cadmium. Therefore, CdR should provide a useful selectable marker for constructing cloning vectors in lactococci. pND302 was mapped with a number of restriction enzymes and found to contain a unique EcoRI site suitable for cloning. Two E. coli/L. lactis shuttle cloning vectors, pND304 and pND624, were constructed by subcloning of the E. coli plasmids pBR322 and pGEM-7Zf(+) containing a 1.6-kb gene encoding nisin resistance (NisR) of lactococcal origin into the EcoRI site of pND302, separately. The E. coli DNA component of pND624 was removed and the resulting plasmid, pND625, consisted of only lactococcal DNA, expressing NisR and CdR, with two synthetic polylinkers that contain multiple restriction sites for versatile cloning. Both pND302 and pND625 can be transformed by electroporation into L. lactis LMO230 at 103/μg DNA and maintained stably in LMO230. The results indicated that pND302 and pND625 are potential food-grade cloning vectors for lactococci. Received: 27 November 1995 / Accepted: 29 December 1995  相似文献   
8.
Gene encoding cyclodextrin glycosyltransferase (CGTase), from thermotolerant Paenibacillus sp. T16 isolated from hot spring area in northern Thailand, was cloned and expressed in E. coli (JM109). The nucleotide sequences of both wild type and transformed CGTases consisted of 2139 bp open reading frame, 713 deduced amino acids residues with difference of 4 amino acid residues. The recombinant cells required 24 h culture time and a neutral pH for culture medium to produce compatible amount of CGTase compared to 72 h culture time and pH 10 for wild type. The recombinant and wild-type CGTases were purified by starch adsorption and phenyl sepharose column chromatography and characterized in parallel. Both enzymes showed molecular weight of 77 kDa and similar optimum pHs and temperatures with recombinant enzyme showing broader range. There were some significant difference in pH, temperature stability and kinetic parameters. The presence of high starch concentration resulted in higher thermostability in recombinant enzyme than the wild type. The recombinant enzyme was more stable at higher temperature and lower pH, with lower K(m) for coupling reaction using cellobiose and cyclodextrins as substrates.  相似文献   
9.
A homolog of mammalian secretory leucocyte proteinase inhibitor or SLPI known as a double WAP domain (DWD) protein has been found in penaeid shrimp and believed to play an important role in innate immune system of the shrimp. The PmDWD identified from the Penaeus monodon EST database was investigated for its expression under pathogen infection. Infections by Vibrio harveyi and white spot syndrome virus (WSSV) up-regulated the expression of the PmDWD, which was peaked at about 24 h post infection and, then, subsided to more or less normal level. The PmDWD was expressed in various tissues of normal, 24-h WSSV-injected and leg-amputated shrimp, predominantly in the hemocytes. The expression was dramatically increased in lymphoid organ upon WSSV infection and leg amputation. The recombinant PmDWD (rPmDWD) was not active against the commercial proteinases: trypsin, chymotrypsin, elastase and subtilisin while its mutant rPmDWD_F70R was active against the subtilisin. By using agar diffusion assay, the rPmDWD inhibited the crude proteinases from lymphoid organs of leg-amputated and WSSV-infected shrimp. It inhibited the crude proteinases from Bacillus subtilis as well. Unlike the mammalian SLPIs, the rPmDWD had no antimicrobial activity against various bacteria.  相似文献   
10.
Highly thermostable β-xylanase produced by newly isolated Thermomyces lanuginosus THKU-49 strain was purified in a four-step procedure involving ammonium sulfate precipitation and subsequent separation on a DEAE-Sepharose fast flow column, hydroxylapatite column, and Sephadex G-100 column, respectively. The enzyme purified to homogeneity had a specific activity of 552 U/mg protein and a molecular weight of 24.9 kDa. The optimal temperature of the purified xylanase was 70°C, and it was stable at temperatures up to 60°C at pH 6.0; the optimal pH was 5.0–7.0, and it was stable in the pH range 3.5–8.0 at 4°C. Xylanase activity was inhibited by Mn2+, Sn2+, and ethylenediaminetetraacetic acid. The xylanase showed a high activity towards soluble oat spelt xylan, but it exhibited low activity towards insoluble oat spelt xylan; no activity was found to carboxymethylcellulose, avicel, filter paper, locust bean gum, cassava starch, and p-nitrophenyl β-d-xylopyranoside. The apparent K m value of the xylanase on soluble oat spelt xylan and insoluble oat spelt xylan was 7.3 ± 0.236 and 60.2 ± 6.788 mg/ml, respectively. Thin-layer chromatography analysis showed that the xylanase hydrolyzed oat spelt xylan to yield mainly xylobiose and xylose as end products, but that it could not release xylose from the substrate xylobiose, suggesting that it is an endo-xylanase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号