首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   4篇
  国内免费   1篇
  2021年   1篇
  2020年   1篇
  2016年   2篇
  2015年   3篇
  2013年   2篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1991年   1篇
  1973年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
A 4-nitrophenylphosphatase (EC 3.1.3.41) was identified in extracts of Aspergillus niger. The production of this activity was decreased by growth on a phosphate-limiting medium and was greatest in a medium supplemented with corn steep liquor. The phosphatase activity was purified by hydrophobic, ion-exchange, and molecular sieve chromatography. The purified enzyme has a native size of approximately 80,000, polypeptide subunits with sizes of 37,000 upon denaturation, and a pI of 4.6. The activity was optimal at pH 8.0 and was stimulated by Mg2+ and to a lesser extent by Mn2+ but was inhibited by Zn2+ and Ca2+. The enzyme was highly specific for 4-nitrophenyl phosphate as substrate, having a Km of 0.77 mM and a turnover number of 108 s-1. The purified enzyme did not hydrolyze any of 22 sugar phosphates, mononucleotides, or other phosphocompounds tested. A small, but reproducible, amount of activity was measured using 5'-DNA phosphate as a substrate. Although some similarities exist to three previously characterized 4-nitrophenylphosphatases from Saccharomyces cerevisiae, the enzyme from A. niger is distinctly different from at least two of these activities.  相似文献   
2.
3.
Engineered bacterial sensors have potential applications in human health monitoring, environmental chemical detection, and materials biosynthesis. While such bacterial devices have long been engineered to differentiate between combinations of inputs, their potential to process signal timing and duration has been overlooked. In this work, we present a two‐input temporal logic gate that can sense and record the order of the inputs, the timing between inputs, and the duration of input pulses. Our temporal logic gate design relies on unidirectional DNA recombination mediated by bacteriophage integrases to detect and encode sequences of input events. For an E. coli strain engineered to contain our temporal logic gate, we compare predictions of Markov model simulations with laboratory measurements of final population distributions for both step and pulse inputs. Although single cells were engineered to have digital outputs, stochastic noise created heterogeneous single‐cell responses that translated into analog population responses. Furthermore, when single‐cell genetic states were aggregated into population‐level distributions, these distributions contained unique information not encoded in individual cells. Thus, final differentiated sub‐populations could be used to deduce order, timing, and duration of transient chemical events.  相似文献   
4.
Versaw WK  Harrison MJ 《The Plant cell》2002,14(8):1751-1766
The uptake and distribution of Pi in plants requires multiple Pi transport systems that must function in concert to maintain homeostasis throughout growth and development. The Pi transporter PHT2;1 of Arabidopsis shares similarity with members of the Pi transporter family, which includes Na(+)/Pi symporters of fungal and animal origin and H(+)/Pi symporters of bacterial origin. Sequence comparisons between proteins of this family revealed that plant members possess extended N termini, which share features with chloroplast transit peptides. Localization of a PHT2;1-green fluorescent protein fusion protein indicates that it is present in the chloroplast envelope. A Pi transport function for PHT2;1 was confirmed in yeast using a truncated version of the protein lacking its transit peptide, which allowed targeting to the plasma membrane. To assess the in vivo role of PHT2;1 in phosphorus metabolism, we identified a null mutant, pht2;1-1. Analysis of the mutant reveals that PHT2;1 activity affects Pi allocation within the plant and modulates Pi-starvation responses, including the expression of Pi-starvation response genes and the translocation of Pi within leaves.  相似文献   
5.
Phosphorus is one of the essential mineral nutrients required by all living cells. Plants assimilate phosphate (P(i)) from the soil, and their root systems encounter tremendous variation in P(i) concentration, both temporally and spatially. Genome sequence data indicate that plant genomes contain large numbers of genes predicted to encode P(i) transporters, the functions of which are largely unexplored. Here we present a comparative analysis of four very closely related P(i) transporters of the PHT1 family of Medicago truncatula. Based on their sequence similarity and locations in the genome, these four genes probably arose via recent gene duplication events, and they form a small subfamily within the PHT1 family. The four genes are expressed in roots with partially overlapping but distinct spatial expression patterns, responses to P(i) and expression during arbuscular mycorrhizal symbiosis. The proteins are located in the plasma membrane. Three members of the subfamily, MtPT1, MtPT2, and MtPT3, show low affinities for P(i). MtPT5 shares 84% amino acid identity with MtPT1, MtPT2, and MtPT3 but shows a high affinity for P(i) with an apparent K(m) in yeast of 13 mum. Sequence comparisons and protein modeling suggest that amino acid residues that differ substantially between MtPT5 and the other three transporters are clustered in two regions of the protein. The data provide the first clues as to amino acid residues that impact transport activity of plant P(i) transporter proteins.  相似文献   
6.
7.

Background  

Recent advances in experimental and computational technologies have fueled the development of many sophisticated bioinformatics programs. The correctness of such programs is crucial as incorrectly computed results may lead to wrong biological conclusion or misguide downstream experimentation. Common software testing procedures involve executing the target program with a set of test inputs and then verifying the correctness of the test outputs. However, due to the complexity of many bioinformatics programs, it is often difficult to verify the correctness of the test outputs. Therefore our ability to perform systematic software testing is greatly hindered.  相似文献   
8.
9.
10.
The Arabidopsis phosphate transporter PHT4;1 was previously localized to the chloroplast thylakoid membrane. Here we investigated the physiological consequences of the absence of PHT4;1 for photosynthesis and plant growth. In standard growth conditions, two independent Arabidopsis knockout mutant lines displayed significantly reduced leaf size and biomass but normal phosphorus content. When mutants were grown in high‐phosphate conditions, the leaf phosphorus levels increased and the growth phenotype was suppressed. Photosynthetic measurements indicated that in the absence of PHT4;1 stromal phosphate was reduced to levels that limited ATP synthase activity. This resulted in reduced CO2 fixation and accumulation of soluble sugars, limiting plant growth. The mutants also displayed faster induction of non‐photochemical quenching than the wild type, in line with the increased contribution of ΔpH to the proton‐motive force across thylakoids. Small‐angle neutron scattering showed a smaller lamellar repeat distance, whereas circular dichroism spectroscopy indicated a perturbed long‐range order of photosystem II (PSII) complexes in the mutant thylakoids. The absence of PHT4;1 did not alter the PSII repair cycle, as indicated by wild‐type levels of phosphorylation of PSII proteins, inactivation and D1 protein degradation. Interestingly, the expression of genes for several thylakoid proteins was downregulated in the mutants, but the relative levels of the corresponding proteins were either not affected or could not be discerned. Based on these data, we propose that PHT4;1 plays an important role in chloroplast phosphate compartmentation and ATP synthesis, which affect plant growth. It also maintains the ionic environment of thylakoids, which affects the macro‐organization of complexes and induction of photoprotective mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号