首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   2篇
  2021年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   9篇
  2012年   7篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1992年   4篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
排序方式: 共有66条查询结果,搜索用时 265 毫秒
1.
The repressor of bacteriophage P1, encoded by the c1 gene, represses the phage lytic functions and is responsible for maintaining the P1 prophage in the lysogenic state. The c1 repressor interacts with at least 11 binding sites or operators widely scattered over the P1 genome. From these operators, a 17 base-pair asymmetric consensus sequence, ATTGCTCTAATAAATTT, was derived. Here, we show that the operator, Op72 of the P1ban operon consists of two overlapping 17 base-pair sequences a and b forming an incomplete palindrome. Op72a matches the consensus sequence, whereas Op72b contains two mismatches. The evidence is based on the sequence analysis of 27 operator mutants constitutive for ban expression. They were identified as single-base substitutions at positions 2 to 10 of Op72a (26 mutants) and at position 8 of Op72b (one mutant). We conclude from gel retardation and footprinting studies that two repressor molecules bind to the operator and that positions 4, 5 and 7 to 10 of the operator play an essential role in repressor recognition.  相似文献   
2.
Bacteriophage P1 encodes a tripartite immunity system composed of the immC, immI, and immT region. Their basic genetic elements are the c1 repressor of lytic functions, the c4 repressor which negatively regulates antirepressor synthesis, and the bof gene, respectively. The function of the latter will be described here. We have cloned and sequenced the bof gene from P1 wild type and a P1 bof amber mutant. Based on the position of a TAG codon of the bof amber mutant the bof wild type gene was localized. It starts with a TTG codon, comprises 82 codons, and is preceded by a promoter structure. The bof protein (Mr = 7500) was overproduced in Escherichia coli from a bof recombinant plasmid and was purified to near homogeneity. The N-terminal amino acids predicted from the DNA sequence of the bof gene were confirmed by sequence analysis of the bof protein. Using a DNA mobility shift assay, we show that bof protein enhances the binding of c1 repressor to the operator of the c1 gene. In accordance with this result, in transformants of Escherichia coli, containing both a bof- and a c1-encoding plasmid, c1 expression is down-regulated. We conclude that bof acts as a modulator protein in the repression of a multitude of c1-controlled operators in the P1 genome.  相似文献   
3.
The temperate phage P1 encodes two genes whose products antagonize the action of the phage's C1 repressor of lytic functions, namely a distantly linked antirepressor gene, ant, and a closely linked c1 inactivator gene, coi. Starting with an inducible coi-recombinant plasmid, Coi protein was overproduced and purified to near homogeneity. By using a DNA mobility shift assay we demonstrate that Coi protein inhibits the operator binding of the C1 repressors of the closely related P1 and P7 phages. Coi protein (Mr = 7,600) exerts its C1-inactivating function by forming a complex with the C1 repressor (Mr = 32,500) at a molar ratio of about 1:1, as shown by density gradient centrifugation and gel filtration. C1 repressor and Coi protein are recovered in active form from the complex, suggesting that noncovalent interactions are the sole requirements for complex formation. The interplay of repressor and antagonists operating in the life cycle of P1 is discussed.  相似文献   
4.
The adult skeletal muscle stem cells, satellite cells, are responsible for skeletal muscle growth and regeneration. Satellite cells represent a heterogeneous cell population that differentially express cell surface markers. The membrane-associated heparan sulfate proteoglycans, syndecan-4, and glypican-1, are differentially expressed by satellite cells during the proliferation and differentiation stages of satellite cells. However, how the population of syndecan-4- or glypican-1-positive satellite cells changes during proliferation and differentiation, and how sex and muscle growth potential affect the expression of these genes is unknown. Differences in the amount of satellite cells positive for syndecan-4 or glypican-1 would affect the process of proliferation and differentiation which would impact both muscle mass accretion and the regeneration of muscle. In the current study, the percentage of satellite cells positive for syndecan-4 or glypican-1 from male and female turkeys from a Randombred Control Line 2 and a line (F) selected for increased 16-week body weight were measured during proliferation and differentiation. Growth selection altered the population of syndecan-4- and glypican-1-positive satellite cells and there were sex differences in the percentage of syndecan-4- and glypican-1-positive satellite cells. This study provides new information on dynamic changes in syndecan-4- and glypican-1-positive satellite cells showing that they are differentially expressed during myogenesis and growth selection and sex affects their expression.  相似文献   
5.

Uxmal and Tulum are two important Mayan sites in the Yucatan peninsula. The buildings are mainly composed of limestone and grey/black discoloration is seen on exposed walls and copious greenish biofilms on inner walls. The principal microorganisms detected on interior walls at both Uxmal and Tulum were cyanobacteria; heterotrophic bacteria and filamentous fungi were also present. A dark‐pigmented mitosporic fungus and Bacillus cereus, both isolated from Uxmal, were shown to be acidogenic in laboratory cultures. Cyanobacteria belonging to rock‐degrading genera Synechocystis and Gloeocapsa were identified at both sites. Surface analysis previously showed that calcium ions were present in the biofilms on buildings at Uxmal and Tulum, suggesting the deposition of biosolubilized stone. Apart from their potential to degrade the substrate, the coccoid cyanobacteria supply organic nutrients for bacteria and fungi, which can produce organic acids, further increasing stone degradation.  相似文献   
6.
7.
The effects of growth- and gender-related differences on satellite cell proliferation and differentiation were investigated using satellite cells isolated from the pectoralis major muscle of a turkey line selected for increased 16-week body weight (F-line) and its unselected randombred control (RBC2-line). Proliferation rates within the F- and RBC2-lines did not differ between sexes. The F-line male and female satellite cells when compared to the RBC2-line male and female satellite cells proliferated at a faster rate. Differentiation rates were increased for the F-line male cells compared to both the F-line female and RBC2-line male satellite cells. No difference in differentiation rate was noted within the RBC2-line satellite cells. For satellite cells from females, the RBC2-line differentiated faster than the F-line. Morphological data on myotube length and the number of nuclei per myotube supported the differentiation data in that F-line male satellite cells had the longest myotubes with the most nuclei, there was no significant difference between myotubes within the RBC2-line, and female-derived myotubes from the RBC2-line were longer than those of the F-line by 96 h of fusion. These data are suggestive of both growth- and gender- related differences in satellite cell proliferation and differentiation.  相似文献   
8.
The objective of this study was to determine the effects of fatty acids on the proliferation, differentiation, and expression of syndecan-4 and glypican-1 in avian myogenic satellite cells (SC). SC derived from the pectoralis major (PM) and biceps femoris (BF) muscles of the turkey and chicken were individually administered 8 different fatty acids in defined medium during proliferation. A parallel set of turkey SC was induced to differentiate. Highest levels of proliferation of turkey PM and BF SC occurred in cultures containing oleate. Linoleate and oleate were equipotent in supporting proliferation of chicken SC. Microscopic examination revealed that inclusion of docosahexaenoate or eicosapentaenoate was toxic towards both PM and BF SC from both species. Linolenate and arachidonate diminished levels of differentiation. Expression of glypican-1 varied between treatments to a greater extent with turkey BF than with PM SC. Expression in chicken PM and BF SC demonstrated a similar pattern in response to treatments. Turkey PM syndecan-4 expression varied between treatments, whereas expression in turkey BF SC was similar between treatments. Expression in chicken SC varied little between treatments. The results demonstrate species and muscle-specific differences in the parameters examined. It is proposed that changes in lipid raft receptor interactions may contribute to these observed differences.  相似文献   
9.
The heparan sulfate proteoglycan, glypican-1, is a low affinity receptor for fibroblast growth factor 2 (FGF2). Fibroblast growth factor 2 is a potent stimulator of skeletal muscle cell proliferation and an inhibitor of differentiation. Heparan sulfate proteoglycans like glypican-1 are required for FGF2 to transduce an intracellular signal. Understanding the role of glypican-1 in the regulation of FGF2-mediated signaling is important in furthering the understanding of the biological processes involved in muscle development and growth. In the current study, a turkey glypican-1 expression vector construct was transfected into turkey myogenic satellite cells resulting in the overexpression of glypican-1. The proliferation, differentiation, and responsiveness to FGF2 were measured in control and transfected cell cultures. The overexpression of glypican-1 in turkey myogenic satellite cells increased both satellite cell proliferation and FGF2 responsiveness, but decreased the rate of differentiation. The current data support glypican-1 modulation of both proliferation and differentiation through an FGF2-mediated pathway.  相似文献   
10.
Syndecan-4 core protein is composed of extracellular, transmembrane, and cytoplasmic domains. The cytoplasmic domain functions in transmitting signals into the cell through the protein kinase C alpha (PKCα) pathway. The glycosaminoglycan (GAG) and N-linked glycosylated (N-glycosylated) chains attached to the extracellular domain influence cell proliferation. The current study investigated the function of syndecan-4 cytoplasmic domain in combination with GAG and N-glycosylated chains in turkey muscle cell proliferation, differentiation, fibroblast growth factor 2 (FGF2) responsiveness, and PKCα membrane localization. Syndecan-4 or syndecan-4 without the cytoplasmic domain and with or without the GAG and N-glycosylated chains were transfected or co-transfected with a small interfering RNA targeting syndecan-4 cytoplasmic domain into turkey muscle satellite cells. The overexpression of syndecan-4 mutants increased cell proliferation but did not change differentiation. Syndecan-4 mutants had increased cellular responsiveness to FGF2 during proliferation. Syndecan-4 increased PKCα cell membrane localization, whereas the syndecan-4 mutants decreased PKCα cell membrane localization compared to syndecan-4. However, compared to the cells without transfection, syndecan-4 mutants increased cell membrane localization of PKCα. These data indicated that the syndecan‐4 cytoplasmic domain and the GAG and N-glycosylated chains are critical in syndecan-4 regulating satellite cell proliferation, responsiveness to FGF2, and PKCα cell membrane localization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号