首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  2018年   1篇
  2016年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2003年   2篇
  1996年   2篇
  1995年   1篇
  1990年   1篇
排序方式: 共有15条查询结果,搜索用时 359 毫秒
1.
2.
Neuronal cdk5 can phosphorylate certain lys-ser-pro (KSP) motifs of neurofilaments and tau protein in the nervous system. We have immunoprecipitated the cdk5 from rat brain using a polyclonal antibody raised against the C-terminus of cdk5. The immunoprecipitate has phosphorylated a KSPXK peptide analog of NF-H, as well as histone H1 and a bacterially expressed rat NF-H protein. The kinase activity was inhibited by staurosporine, isopentanyladenine and olomoucine in a dose dependent manner. Kinetic studies indicated Ki values of 39 nM, 38 μM and 8 μM, respectively for staurosporine, isopentanyladenine and olomoucine. The inhibition by staurosporine was non-competitive with respect to phosphoryl acceptor substrates. Western blot analysis of the immunoprecipitate showed both cdk5 and p67 (munc-18), a putative regulator molecule of the kinase. Addition of p67 fusion protein enhanced the kinase activity of the immunoprecipitate by 60% above the basal activity. P67 elevated Ki values for both staurosporine and olomoucine. The degree of inhibition at high concentrations of these inhibitors was unaltered by exogenous p67 indicating a lack of competitive interactions with p67. The high affinity of staurosporine for cdk5 suggests that cdk5 may be one of the targets for the neurotropic effect of staurosporine.  相似文献   
3.
Cdk5 is a key factor in tau aggregation and tangle formation in vivo   总被引:28,自引:0,他引:28  
Tau aggregation is a common feature of neurodegenerative diseases such as Alzheimer's disease, and hyperphosphorylation of tau has been implicated as a fundamental pathogenic mechanism in this process. To examine the impact of cdk5 in tau aggregation and tangle formation, we crossed transgenic mice overexpressing the cdk5 activator p25, with transgenic mice overexpressing mutant (P301L) human tau. Tau was hyperphosphorylated at several sites in the double transgenics, and there was a highly significant accumulation of aggregated tau in brainstem and cortex. This was accompanied by increased numbers of silver-stained neurofibrillary tangles (NFTs). Insoluble tau was also associated with active GSK. Thus, cdk5 can initiate a major impact on tau pathology progression that probably involves several kinases. Kinase inhibitors may thus be beneficial therapeutically.  相似文献   
4.
As axons myelinate, establish a stable neurofilament network, and expand in caliber, neurofilament proteins are extensively phosphorylated along their C-terminal tails, which is recognized by the monoclonal antibody, RT-97. Here, we demonstrate in vivo that RT-97 immunoreactivity (IR) is generated by phosphorylation at KSPXK or KSPXXXK motifs and requires flanking lysines at specific positions. extracellular signal regulated kinase 1,2 (ERK1,2) and pERK1,2 levels increase in parallel with phosphorylation at the RT-97 epitope during early postnatal brain development. Purified ERK1,2 generated RT-97 on both KSP motifs on recombinant NF-H tail domain proteins, while cdk5 phosphorylated only KSPXK motifs. RT-97 epitope generation in primary hippocampal neurons was regulated by extensive cross-talk among ERK1,2, c-Jun N-terminal kinase 1,2 (JNK1,2) and cdk5. Inhibition of both ERK1,2 and JNK1,2 completely blocked RT-97 generation. Cdk5 influenced RT-97 generation indirectly by modulating JNK activation. In mice, cdk5 gene deletion did not significantly alter RT-97 IR or ERK1,2 and JNK activation. In mice lacking the cdk5 activator P35, the partial suppression of cdk5 activity increased RT-97 IR by activating ERK1,2. Thus, cdk5 influences RT-97 epitope generation partly by modulating ERKs and JNKs, which are the two principal kinases regulating neurofilament phosphorylation. The regulation of a single target by multiple protein kinases underscores the importance of monitoring other relevant kinases when the activity of a particular one is blocked.  相似文献   
5.

Background

Hypoxia inducible factors (HIFs) are the principal means by which cells upregulate genes in response to hypoxia and certain other stresses. There are two major HIFs, HIF-1 and HIF-2. We previously found that certain genes are preferentially activated by HIF-2. One was protein tyrosine phosphatase, receptor-type, Z polypeptide 1 (PTPRZ1). PTPRZ1 is overexpressed in a number of tumors and has been implicated in glioblastoma pathogenesis.

Methodology/Principal Findings

To understand the preferential activation of PTPRZ1 by HIF-2, we studied the PTPRZ1 promoter in HEK293T cells and Hep3B cells. Through deletion and mutational analysis, we identified the principal hypoxia response element. This element bound to both HIF-1 and HIF-2. We further identified a role for ELK1, an E26 transformation-specific (Ets) factor that can bind to HIF-2α but not HIF-1α, in the HIF-2 responsiveness. Knock-down experiments using siRNA to ELK1 decreased HIF-2 activation by over 50%. Also, a deletion mutation of one of the two Ets binding motifs located near the principal hypoxia response element similarly decreased activation of the PTPRZ1 promoter by HIF-2. Finally, chromatin immunoprecipitation assays showed binding of HIF and ELK1 to the PTPRZ1 promoter region.

Conclusions/Significance

These results identify HIF-binding and Ets-binding motifs on the PTPRZ1 promoter and provide evidence that preferential activation of PTPRZ1 by HIF-2 results at least in part from cooperative binding of HIF-2 and ELK1 to nearby sites on the PTPRZ1 promoter region. These results may have implications in tumor pathogenesis and in understanding neurobiology, and may help inform the development of novel tumor therapy.  相似文献   
6.
In neurons the phosphorylation of neurofilament (NF) proteins NF-M and NF-H is topographically regulated. Although kinases and NF subunits are synthesized in cell bodies, extensive phosphorylation of the KSP repeats in tail domains of NF-M and NF-H occurs primarily in axons. The nature of this regulation, however, is not understood. As obligate heteropolymers, NF assembly requires interactions between the core NF-L with NF-M or NF-H subunits, a process inhibited by NF head domain phosphorylation. Phosphorylation of head domains at protein kinase A (PKA)-specific sites seems to occur transiently in cell bodies after NF subunit synthesis. We have proposed that transient phosphorylation of head domains prevents NF assembly in the soma and inhibits tail domain phosphorylation; i.e. assembly and KSP phosphorylation in axons depends on prior dephosphorylation of head domain sites. Deregulation of this process leads to pathological accumulations of phosphorylated NFs in the soma as seen in some neurodegenerative disorders. To test this hypothesis, we studied the effect of PKA phosphorylation of the NF-M head domain on phosphorylation of tail domain KSP sites. In rat cortical neurons we showed that head domain phosphorylation of endogenous NF-M by forskolin-activated PKA inhibits NF-M tail domain phosphorylation. To demonstrate the site specificity of PKA phosphorylation and its effect on tail domain phosphorylation, we transfected NIH3T3 cells with NF-M mutated at PKA-specific head domain serine residues. Epidermal growth factor stimulation of cells with mutant NF-M in the presence of forskolin exhibited no inhibition of NF-tail domain phosphorylation compared with the wild type NF-M-transfected cells. This is consistent with our hypothesis that transient phosphorylation of NF-M head domains inhibits tail domain phosphorylation and suggests this as one of several mechanisms underlying topographic regulation.  相似文献   
7.

Background

Alström syndrome (ALMS) is a very rare autosomal recessive monogenic disorder caused by a mutation in the ALMS1 gene and characterised by childhood onset obesity, dyslipidaemia, advanced non-alcoholic fatty liver disease, diabetes and extreme insulin resistance. There is evidence of multi-organ fibrosis in ALMS and severity of the disease often leads to organ failure with associated morbidities, resulting in reduced life expectancy. There are no specific treatments for this disease, and current management consists of only symptomatic therapies. PBI-4050 is a new molecular entity with demonstrated anti-inflammatory and anti-fibrotic activities in preclinical models, including animal models of human diseases characterized by progressive fibrosis in the kidney, heart, liver and lungs. Moreover, completed Phase 2 studies in type 2 diabetes mellitus with metabolic syndrome and idiopathic pulmonary fibrosis further support the anti-inflammatory and anti-fibrotic activity of PBI-4050. Together, these data suggest that PBI-4050 has the potential to treat the pathological inflammatory and fibrotic features of ALMS. The aim of this study is to evaluate the safety and anti-inflammatory & anti-fibrotic activities of PBI-4050 in subjects with ALMS.

Methods

This is a Phase 2, single-centre, single-arm, open-label trial. A total of 18 patients with ALMS will be enrolled to receive PBI-4050 at a total daily oral dose of 800?mg for an initial 24?weeks with continuation for an additional 36 or 48?weeks. Standard assessments of safety include adverse events, clinical laboratory tests, vital signs, physical examination and electrocardiograms. Efficacy assessments include adipose tissue biopsy, hyperinsulinaemic-euglycaemic glucose clamp, adipose tissue microdialysis, liver transient elastography, liver and cardiac magnetic resonance imaging, and laboratory blood tests.

Discussion

This is the first clinical study of PBI-4050 in subjects with ALMS. Given the rarity and complexity of the disease, a single-centre, single-arm, open-label design has been chosen to maximise subject exposure and increase the likelihood of achieving our study endpoints. The results will provide valuable safety and preliminary evidence of the effects of PBI-4050 in ALMS, a rare heterogeneous disease associated with progressive fibrosis and premature mortality.

Trial registration

The trial is registered on ClinicalTrials.gov (Identifier; NCT02739217, February 2016) and European Union Drug Regulating Authorities Clinical Trials (EudraCT Number 2015–001625-16, Sept 2015).
  相似文献   
8.
Phosphoserine phosphatase (PSPase), a cytosolic enzyme has been purified 106 fold from human brain, by employing conventional protein purification techniques. The use of MgCl2 (10 mM) and chloroform treatment, during purification enabled the removal of non-specific proteins. The final enzyme preparation exhibited a broad pH optimum of 5.6–6.6 and could dephosphorylate bothl andd enantiomers of the phosphoserine, but with different Km values for O-P-L serine (3.6×10–5M) and O-P-D serine (1×10–4M). Enzyme activity was found to be specific for phosphoserine, whereas other phosphoesters including phosphothreonine and phosphoproteins such as casein and phosvitin were found to be poor substrates. The enzyme activity was uncompetitively inhibited byl-serine. Further the PSPase activity was inhibited by vanadate, (41%), trifluoperazine (23%), chlorpromazine (34%) at an equimolar concentration of 1 mM, whereas lithium and ethanol did not influence the enzyme activity. Minor tranquilizers such as diazepam and chlordiazepoxide activated the enzyme activity to an extent of 13% and 59% respectively. In addition, species and regionwise heterogeneity was observed with respect to distribution of enzyme activity in six major areas of human, rabbit and rat brains.  相似文献   
9.
Signaling mechanisms involving protein tyrosine phosphatases govern several cellular and developmental processes. These enzymes are regulated by several mechanisms which include variation in the catalytic turnover rate based on redox stimuli, subcellular localization or protein-protein interactions. In the case of Receptor Protein Tyrosine Phosphatases (RPTPs) containing two PTP domains, phosphatase activity is localized in their membrane-proximal (D1) domains, while the membrane-distal (D2) domain is believed to play a modulatory role. Here we report our analysis of the influence of the D2 domain on the catalytic activity and substrate specificity of the D1 domain using two Drosophila melanogaster RPTPs as a model system. Biochemical studies reveal contrasting roles for the D2 domain of Drosophila Leukocyte antigen Related (DLAR) and Protein Tyrosine Phosphatase on Drosophila chromosome band 99A (PTP99A). While D2 lowers the catalytic activity of the D1 domain in DLAR, the D2 domain of PTP99A leads to an increase in the catalytic activity of its D1 domain. Substrate specificity, on the other hand, is cumulative, whereby the individual specificities of the D1 and D2 domains contribute to the substrate specificity of these two-domain enzymes. Molecular dynamics simulations on structural models of DLAR and PTP99A reveal a conformational rationale for the experimental observations. These studies reveal that concerted structural changes mediate inter-domain communication resulting in either inhibitory or activating effects of the membrane distal PTP domain on the catalytic activity of the membrane proximal PTP domain.  相似文献   
10.

Background

To assess regional systolic function and global contractile function in patients with WPW Syndrome.

Method

Eleven cases with manifest Wolff-Parkinson-White (WPW) syndrome in sinus rhythm were compared to 11 age matched controls. 2D strain analysis was performed and peak segmental radial strain (pRS) values obtained from basal ventricular parasternal short-axis images (70 ± 5 frames/sec) using a dedicated software package. Heterogeneity of radial strain pattern in six circumferential basal left ventricular segments was measured in terms of standard deviations of peak RS (SDpRS) or range (difference between maximum and minimum peak RS i.e. RangepRS). Spectral Doppler (continuous wave) measurements were acquired through the left ventricular outflow tract to determine Pre Ejection Period (PEP), Left Ventricular Ejection Time (LVET) and measures of left ventricular systolic performance.

Results

LV segmental radial strain was profoundly heterogeneous in WPW cases in contrast to fairly homogenous strain pattern in normal subjects. Wide SDpRS values 17.5 ± 8.9 vs 3.3 ± 1.4, p<0.001 and RangepRS 42.7 ± 20.8 vs.8.5 ± 3.6 , p<0.001 were observed among WPW and healthy subjects respectively. PEP (132.4 ± 14.7 vs 4.7 ± 0.5ms, p<0.001) and corrected PEP (76.1 ± 8.0 vs 2.7 ± 0.4ms, p<0.001) were significantly longer in WPW patients compared to controls. The PEP/LVET ratio was also significantly greater in WPW cohort (0.49 ± 0.04 vs. 0.28 ± 0.05, p <0.001) suggesting global systolic dysfunction.

Conclusions

Patients with manifest preexcitation (predominantly those with right-sided pathways) have regional and global contractile dysfunction resulting from aberrant impulse propagation inherent to the preexcited state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号