首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有9条查询结果,搜索用时 753 毫秒
1
1.
2.
The classical pathway of complement is crucial to the immune system, but it also contributes to inflammatory diseases when dysregulated. Binding of the C1 complex to ligands activates the pathway by inducing autoactivation of associated C1r, after which C1r activates C1s. C1s cleaves complement component C4 and then C2 to cause full activation of the system. The interaction between C1s and C4 involves active site and exosite-mediated events, but the molecular details are unknown. In this study, we identified four positively charged amino acids on the serine protease domain that appear to form a catalytic exosite that is required for efficient cleavage of C4. These residues are coincidentally involved in coordinating a sulfate ion in the crystal structure of the protease. Together with other evidence, this pointed to the involvement of sulfate ions in the interaction with the C4 substrate, and we showed that the protease interacts with a peptide from C4 containing three sulfotyrosine residues. We present a molecular model for the interaction between C1s and C4 that provides support for the above data and poses questions for future research into this aspect of complement activation.  相似文献   
3.
The complexes [Me2(Meclo)SnOSn(Meclo)Me2]2 (2) and [Ph3Sn(Meclo)] (3) where HMeclo is meclofenamic acid, N-(2,6-dichloro-m-tolylanthranilic acid)], have been prepared and structurally characterized by means of vibrational, 1H and 13C NMR spectroscopies. The crystal structure of complexes (2) and (3) have been determined by X-ray crystallography. Three distannoxane rings are present to the dimeric tetraorganodistannoxane of planar ladder arrangement of (2). The structure is centro symmetric and features a central rhombus Sn2O2 unit two additional tin atoms linked at the oxygen atoms. Five- and six-coordinated tin centers are present in the dimer distannoxane. X-ray analysis of (3) revealed a penta-coordinated structure containing Ph3Sn coordinated to the chelated carboxylato group. The polar imino hydrogen atom participates in intra-molecular hydrogen bonds. Complexes (2) and (3) are self-assembled via π → π, C-H-π, stacking interactions and intra-molecular hydrogen bonds. Meclofenamic acid and [Ph3Sn(Meclo)] have been evaluated for antiproliferative activity in vitro against three human cancer cell lines: MCF-7 (human breast cancer cell line), T24 (bladder cancer cell line), A-549 (non-small cell lung carcinoma) and a mouse L-929 (a fibroblast-like cell line cloned from strain L). The [Ph3Sn(Meclo)] complex exhibited high cytotoxic activity against all the cancer cell lines. Meclofenamic and [Ph3Sn(Meclo)] were tested for anti-mycobacterial activity against Mycobacterium tuberculosis H37Rv. The [Ph3Sn(Meclo)] complex was found to be a promising anti-mycobacterial lead compound, displaying high activity against M. tuberculosis H37Rv.  相似文献   
4.
5.
The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the reaction between shikimate 3-phosphate and phosphoenolpyruvate to form 5-enolpyruvylshikimate 3-phosphate, an intermediate in the shikimate pathway, which leads to the biosynthesis of aromatic amino acids. EPSPS exists in an open conformation in the absence of substrates and/or inhibitors and in a closed conformation when bound to the substrate and/or inhibitor. In the present report, the H/D exchange properties of EPSPS from Mycobacterium tuberculosis ( Mt) were investigated for both enzyme conformations using ESI mass spectrometry and circular dichroism (CD). When the conformational changes identified by H/D exchanges were mapped on the 3-D structure, it was observed that the apoenzyme underwent extensive conformational changes due to glyphosate complexation, characterized by an increase in the content of alpha-helices from 40% to 57%, while the beta-sheet content decreased from 30% to 23%. These results indicate that the enzyme underwent a series of rearrangements of its secondary structure that were accompanied by a large decrease in solvent access to many different regions of the protein. This was attributed to the compaction of 71% of alpha-helices and 57% of beta-sheets as a consequence of glyphosate binding to the enzyme. Apparently, MtEPSPS undergoes a series of inhibitor-induced conformational changes, which seem to have caused synergistic effects in preventing solvent access to the core of molecule, especially in the cleft region. This may be part of the mechanism of inhibition of the enzyme, which is required to prevent the hydration of the substrate binding site and also to induce the cleft closure to avoid entrance of the substrates.  相似文献   
6.
The novel triphenyltin(IV) esters of flufenamic acid (1), Hflu, [Ph3Sn(flu)] (2), and of [2-(2,3-dichlorophenylamino)benzoic acid] (3), Hdcpa, [Ph3Sn(dcpa)] (4) have been structurally characterized by means of vibrational and 1H, 13C NMR spectroscopic studies. The crystal and molecular structures of [SnPh3(dcpa)(DMSO)] 4a are described. The molecular structure of 4a reveals that the Sn atom has a distorted trigonal bipyramidal coordination geometry with equatorial phenyl groups and the carboxylate and dimethylsulfoxide oxygen atoms occupying axial positions. The crystal structure of 4a is self-assembled by C-H---π and π-π stacking interactions. The in vitro cytotoxic activity of 1-4 and of the related non-steroidal anti-inflammatory drugs, NSAIDs, [2-(2,6-dimethylphenylamino)benzoic acid], Hdmpa (5), [Ph3Sn(dmpa)] (6), [2-(2,3-dimethylphenylamino)benzoic acid], mefenamic acid, Hmef (7) and [Ph3Sn(mef)] (8) has been evaluated against the cancer cell lines MCF-7, T-24, A-549 and L-929. The ligands exhibited very poor cytotoxic activity against the four cancer cell lines. Complex 6 exhibits the highest activity and selectivity against A-549 and MCF-7 cancer cell lines and complex 8 the highest activity and selectivity against T-24 cancer cell line. The cytotoxic results indicate that coupling of Hdmpa and Hmef with R3Sn(IV) metal center results in complexes with important biological properties and remarkable cytotoxic activity, since they display IC50 values in a μΜ range better to that of the antitumor drug cis-platin. Complexes 6 and 8 are considered as excellent antitumor compounds and the results of this study represent the discovery of triphenyltin(IV)esters as a potential novel class of anticancer agents.  相似文献   
7.
Helmy R  Biba M  Zang J  Mao B  Fogelman K  Vlachos V  Hosek P  Welch CJ 《Chirality》2007,19(10):787-792
Despite its status as the preferred method for routine enantiopurity analysis in pharmaceutical research, supercritical fluid chromatography (SFC) has historically been unsuited for the accurate and precise measurements required for release testing of active pharmaceutical ingredients (APIs) under current good manufacturing processes (cGMPs). Insufficient signal to noise, as compared to HPLC, has heretofore been the major limitation of the chiral SFC approach. We herein describe an investigation into the fundamental limitations and sources of noise in the SFC approach, identifying thermal, electronic, and mechanical sources of noise within the flow cell as key parameters contributing to reduced sensitivity. A variety of instrument modifications are explored, ultimately leading to the development of a new and improved flow cell and other instrument modifications that allow suitable sensitivity and accuracy to carry out GMP release testing for enantiopurity analysis using SFC.  相似文献   
8.
Chemokine-receptor interactions regulate leukocyte trafficking during inflammation. CC chemokines exist in equilibrium between monomeric and dimeric forms. Although the monomers can activate chemokine receptors, dimerization is required for leukocyte recruitment in vivo, and it remains controversial whether dimeric CC chemokines can bind and activate their receptors. We have developed an obligate dimeric mutant of the chemokine monocyte chemoattractant protein-1 (MCP-1) by substituting Thr(10) at the dimer interface with Cys. Biophysical analysis showed that MCP-1(T10C) forms a covalent dimer with similar structure to the wild type MCP-1 dimer. Initial cell-based assays indicated that MCP-1(T10C) could activate chemokine receptor CCR2 with potency reduced 1 to 2 orders of magnitude relative to wild type MCP-1. However, analysis of size exclusion chromatography fractions demonstrated that the observed activity was due to a small proportion of MCP-1(T10C) being monomeric and highly potent, whereas the majority dimeric form could neither bind nor activate CCR2 at concentrations up to 1 μM. These observations help to reconcile previous conflicting results and indicate that dimeric CC chemokines do not bind to their receptors with affinities approaching those of the corresponding monomeric chemokines.  相似文献   
9.
Chemokine receptors are commonly post-translationally sulfated on tyrosine residues in their N-terminal regions, the initial site of binding to chemokine ligands. We have investigated the effect of tyrosine sulfation of the chemokine receptor CCR2 on its interactions with the chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2). Inhibition of CCR2 sulfation, by growth of expressing cells in the presence of sodium chlorate, significantly reduced the potency for MCP-1 activation of CCR2. MCP-1 exists in equilibrium between monomeric and dimeric forms. The obligate monomeric mutant MCP-1(P8A) was similar to wild type MCP-1 in its ability to induce leukocyte recruitment in vivo, whereas the obligate dimeric mutant MCP-1(T10C) was less effective at inducing leukocyte recruitment in vivo. In two-dimensional NMR experiments, sulfated peptides derived from the N-terminal region of CCR2 bound to both the monomeric and dimeric forms of wild type MCP-1 and shifted the equilibrium to favor the monomeric form. Similarly, MCP-1(P8A) bound more tightly than MCP-1(T10C) to the CCR2-derived sulfopeptides. NMR chemical shift mapping using the MCP-1 mutants showed that the sulfated N-terminal region of CCR2 binds to the same region (N-loop and β3-strand) of both monomeric and dimeric MCP-1 but that binding to the dimeric form also influences the environment of chemokine N-terminal residues, which are involved in dimer formation. We conclude that interaction with the sulfated N terminus of CCR2 destabilizes the dimerization interface of inactive dimeric MCP-1, thus inducing dissociation to the active monomeric state.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号