首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   14篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   3篇
  2013年   4篇
  2012年   9篇
  2011年   7篇
  2010年   9篇
  2008年   1篇
  2007年   4篇
  2006年   7篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   4篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1986年   6篇
  1985年   4篇
  1984年   2篇
  1983年   7篇
  1982年   5篇
  1981年   4篇
  1980年   4篇
  1979年   2篇
  1978年   3篇
  1977年   5篇
  1976年   4篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1969年   1篇
  1967年   4篇
  1966年   1篇
排序方式: 共有157条查询结果,搜索用时 265 毫秒
1.
An easy, reproducible and fast procedure to isolate DNA from cotton leaves is described. The addition of 0.5 M glucose in the extraction buffer avoids browning by polyphenolic compounds and improves the quality of DNA for molecular analysis. The DNA yield ranged between 150–400 mg per gram of fresh tissue. The DNA was suitable for digestion by restriction enzymes and amplificatiion by Taq DNA polymerase.  相似文献   
2.
Summary Backcross and F2 progenies were produced between two bean genotypes, XR-235 and Calima, which differ in seed weight by a factor of two. The small-seeded XR-235 was used as the pistillate and recurrent parent. These genotypes showed polymorphisms at nine isozyme loci and at the phaseolin locus. Seed size parameters (weight, length, width, and thickness) were determined for each BC1 and F2 individual, i.e., for seeds harvested from XR-235 after pollination with F1 and from the F1 after selfing, respectively. A combination of starch gel electrophoresis and enzyme activity staining was used to determine the genotype of each BC1 and F2 individual at the segregating loci. SDS-PAGE and Coomassie blue staining were used to determine geno-type at the phaseolin locus. Tests for independent assortment using two-way contingency and maximum likelihood tables revealed three linkage pairs: Aco-1 — 20 cM — Dia-1; Adh-1 — 2 cM — Got-2; and Est-2 — 11 cM — Pha. Statistical comparisons were made between the means of genotype classes at each segregating locus for all seed size parameters. The results from two independently obtained BC1s and the F2 consistently indicated that the Adh-1-Got-2 segment was linked to a locus that affected seed size and overcame maternal control over seed size. This locus has been designated Ssz-1. This gene exhibited additive gene action and accounted for 30–50% of the seed size difference between the parents.Florida Agricultural Experiment Station, Journal Series No. R00696  相似文献   
3.
Summary The linkage relationship of 11 bean (Phaseolus vulgaris) seed proteins (including phaseolin), 9 enzyme loci, and theP locus were analyzed in backcross and F2 progenies by use of the software package Mapmaker. The progenies were obtained by crossing the breeding line XR-235-1 and the cultivar Calima. Allelic differences for seed protein loci were detected with SDS-PAGE and those for enzyme loci with starch gel electrophoresis and activity stains. The seed coat color of Calima is a red/beige mottled pattern and that of XR-235-1 is white. Segregation at theP locus was followed by recording the phenotype of the BC1S1 and F3 seed. A linkage group comprising ca. 90 cM was detected with the following gene order:Est-2 — 11 —Pha — 8 — (Spe/Spg) — 24 — P — 9 — (Spa/Spv) — 16 —Spba — 22 —Mdh-1. In addition, another linkage group was detected: (Spd/Spf/Sph) — 5 -Spca. Therefore, the seed proteins appear to be organized in clusters in the bean genome.Florida Agricultural Experiment Station, Journal Series No. R-01131  相似文献   
4.
The NADP-linked glutamate dehydrogenase (NADP-gluDH) purified from epimastigotes of the Tulahuén strain, Tul 2 stock, of Trypanosoma cruzi, was inhibited by Cibacron Blue FG3A, and inactivated by preincubation with phenylglyoxal or Woodward's Reagent K. The inhibition by Cibracron Blue FG3A, competitive towards NADPH with an apparent Ki of 20 microM, suggests that the enzyme presents the "dinucleotide fold" characteristic of most dehydrogenases and kinases. The inactivation of the NADP-gluDH by preincubation with phenylglyoxal, with a reaction order of 1, and the partial protection afforded by alpha-oxoglutarate, suggest the presence of one arginine residue in the active site of the enzyme, which might participate in the binding of alpha-oxoglutarate through interaction with one of the carboxyl groups of the substrate. The inactivation of the NADP-gluDH by preincubation with Woodward's Reagent K suggests the presence of a carboxyl group, from an aspartic or glutamic acid residue, at the active site, which might participate in the binding of the cationic substrate NH+4. The presence of NADPH during preincubation with the reagent increased the inactivation rate, which suggests that binding of the coenzyme increases the exposure of the reactive carboxyl group.  相似文献   
5.
Two different types of essential carboxyl groups were detected in the extrinsic component of the proton ATPase of Rhodospirillum rubrum. Chemical modification of R. rubrum chromatophores or its solubilized ATPase by Woodward's reagent K resulted in inactivation of photophosphorylating and ATPase activities. The apparent order of reaction was nearly 1 with respect to reagent concentration and similar K1 were obtained for the soluble and membrane-bound ATPases suggesting that inactivation was associated with modification of one essential carboxyl group located in the soluble component of the proton ATPase. Inactivation was prevented by adenine nucleotides but not by divalent cations. Dicyclohexylcarbodiimide completely inhibited the solubilized ATPase with a K1 of 5.2 mM and a K2 of 0.81 min-1. Mg2+ afforded nearly complete protection with a Kd of 2.8 mM. Two moles of [14C]dicyclohexylcarbodiimide were incorporated per mole of enzyme for complete inactivation but in the presence of 30 mM MgCl2 only one mole was incorporated and there was no inhibition. The labeling was recovered mostly from the beta subunit. The incorporation of the labeled reagent into the ATPase was not prevented by previous modification with Woodward's reagent K. It is concluded that both reagents modified two different essential carboxyl groups in the soluble ATPase from R. rubrum.  相似文献   
6.
Chemical modification of Rhodospirillum rubrum chromatophores by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) results in inactivation of photophosphorylation, Mg2+-ATPase, oxidative phosphorylation and ATP-driven transhydrogenase, with apparent first-order kinetics. Other energy-linked reactions such as light-driven transhydrogenase and light-dependent proton uptake were insensitive to NBD-Cl. The Ca2+-ATPase activity of the soluble coupling factor from chromatophores (R. rubrum F1) was inactivated by NBD-Cl with kinetics resembling those described for Mg2+-ATPase and photophosphorylation activities of chromatophores. Both NBD-chromatophores and NBD-R. rubrum F1 fully recovered their activities when subjected to thiolysis by dithioerythritol. Phosphoryl transfer reactions of chromatophores and Ca2+-ATPase activity of R. rubrum F1 were fully protected by 5 mM Pi against modification by NBD-Cl. ADP or ATP afforded partial protection. Analysis of the protection of Ca2+-ATPase activity by Pi indicated that NBD-Cl and Pi are mutually exclusive ligands. Spectroscopic studies revealed that tyrosine and sulfhydryl residues in R. rubrum F1 underwent modification by NBD-Cl. However, the inactivation was only related to the modification of tyrosine groups.  相似文献   
7.
The Fr gene in common bean, Phaseolus vulgaris L., is a unique gene for the study of plant nuclear-mitochondrial interactions because it appears to directly influence plant mitochondrial genome structure, resulting in the restoration of pollen fertility in cytoplasmic male sterile plants. This gene action is distinct from other pollen fertility restoration systems characterized to date. As a first step towards the map-based cloning of this unusual nuclear gene, we identified RAPD markers linked to Fr using bulked segregant analysis of near-isogenic lines. Using DNA gel blot hybridization, we localized the identified RAPD markers to a linkage group on the common bean RFLP map and constructed a linkage map of the Fr region using both RAPD markers and RFLP markers. Analysis of the mode of Fr action with the aid of identified Fr-linked DNA markers indicated that Fr functions in a semidominant fashion, showing dosage effect in controlling the dynamics of a heteroplasmic mitochondrial population. We also present our observations on the developmental distinctions, crucial in the accurate mapping of the Fr gene, between spontaneous cytoplasmic reversion and Fr-driven fertility restoration, two phenomena that are phenotypically indistinguishable.  相似文献   
8.
Genome conservation among three legume genera detected with DNA markers.   总被引:5,自引:0,他引:5  
A set of 219 DNA clones derived from mungbean (Vigna radiata), cowpea (V. unguiculata), common bean (Phaseolus vulgaris), and soybean (Glycine max) were used to generate comparative linkage maps among mungbean, common bean, and soybean. The maps allowed an assessment of linkage conservation and collinearity among the three genomes. Mungbean and common bean, both of the subtribe Phaseolinae, exhibited a high degree of linkage conservation and preservation of marker order. Most linkage groups of mungbean consisted of only one or two linkage blocks from common bean (and vice versa). The situation was significantly different with soybean, a member of the subtribe Glycininae. Mungbean and common bean linkage groups were generally mosaics of short soybean linkage blocks, each only a few centimorgans in length. These results suggest that it would be fruitful to join maps of mungbean and common bean, while knowledge of conserved genomic blocks would be useful in increasing marker density in specific genomic regions for all three genera. These comparative maps may also contribute to enhanced understanding of legume evolution.  相似文献   
9.
10.
The rate of inhibition of cyclic photophosphorylation in chloroplast thylakoids by the arginine reagent phenylglyoxal was enhanced in the light, i.e., under conditions where membrane energization occurred. Uncouplers, but not energy-transfer inhibitors, prevented the effect of light. Chemical modification of chloroplast thylakoids by phenylglyoxal under dark or in light conditions affected differently the light-induced exchange of tightly bound ADP. In both cases the exchange was less inhibited than photophosphorylation. Complete inhibition of ATPase activity of soluble CF1 was correlated with the incorporation of 8 mol [14C]phenylglyoxal per mol enzyme. About 50% of the incorporated radioactivity was lost at different rates depending on the buffer present and suggesting a change in the stoichiometry of the adduct from 2:1 to 1:1. Inhibition of ATPase and photophosphorylating activities of chloroplasts by modification with [14C]phenylglyoxal in the dark was associated with the incorporation of 1 and 2 mol reagent per mol membrane-bound CF1, respectively. In the light the rate of incorporation was enhanced and both reactions were inactivated when 2 mol [14C]phenylglyoxalCF1 were bound. In all the labelling experiments the radioactivity was mainly recovered from the α- and β-subunits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号