首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   6篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   5篇
  2013年   5篇
  2012年   3篇
  2011年   1篇
  2010年   4篇
  2009年   4篇
  2008年   5篇
  2007年   4篇
  2006年   7篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1987年   2篇
排序方式: 共有57条查询结果,搜索用时 31 毫秒
1.
2.
Microbial P450 enzymes in biotechnology   总被引:9,自引:0,他引:9  
Oxidations are key reactions in chemical syntheses. Biooxidations using fermentation processes have already conquered some niches in industrial oxidation processes since they allow the introduction of oxygen into non-activated carbon atoms in a sterically and optically selective manner that is difficult or impossible to achieve by synthetic organic chemistry. Biooxidation using isolated enzymes is limited to oxidases and dehydrogenases. Surprisingly, cytochrome P450 monooxygenases have scarcely been studied for use in biooxidations, although they are one of the largest known superfamilies of enzyme proteins. Their gene sequences have been identified in various organisms such as humans, bacteria, algae, fungi, and plants. The reactions catalyzed by P450s are quite diverse and range from biosynthetic pathways (e.g. those of animal hormones and secondary plant metabolites) to the activation or biodegradation of hydrophobic xenobiotic compounds (e.g. those of various drugs in the liver of higher animals). From a practical point of view, the great potential of P450s is limited by their functional complexity, low activity, and limited stability. In addition, P450-catalyzed reactions require a constant supply of NAD(P)H which makes continuous cell-free processes very expensive. Quite recently, several groups have started to investigate cost-efficient ways that could allow the continuous supply of electrons to the heme iron. These include, for example, the use of electron mediators, direct electron supply from electrodes, and enzymatic approaches. In addition, methods of protein design and directed evolution have been applied in an attempt to enhance the activity of the enzymes and improve their selectivity. The promising application of bacterial P450s as catalyzing agents in biocatalytic reactions and recent progress made in this field are both covered in this review.  相似文献   
3.
Biotransformations using prokaryotic P450 monooxygenases   总被引:5,自引:0,他引:5  
Recent studies on microbial cytochrome P450 enzymes have covered several new areas. Advances have been made in structure-function analysis and new non-enzymatic/electrochemical systems for the replacement of NAD(P)H in biocatalysis have been developed. Furthermore, the properties of some enzymes have been re-engineered by site-directed mutagenesis or by methods of directed evolution and new P450s have been functionally expressed and characterized. It is thought that a combination of these approaches will facilitate the use of isolated P450 monooxygenases in biocatalysis.  相似文献   
4.
The P450 monooxygenases CYP102A1 from Bacillus megaterium and CYP102A3 from Bacillus subtilis are fusion flavocytochromes comprising of a P450 heme domain and a FAD/FMN reductase domain. This protein organization is responsible for the extraordinary catalytic activities making both monooxygenases promising enzymes for biocatalysis. CYP102A1 and CYP102A3 are fatty acid hydroxylases that share 65% identity, and their mutants are able to oxidize a wide range of substrates. In an attempt to increase the process stability of CYP102A1, we exchanged the more unstable reductase domain of CYP102A1 with the more stable reductase domain of CYP102A3. Stability of the chimeric fusion protein was determined spectrophotometrically as well as by measuring the hydroxylation activity towards 12-para-nitrophenoxydodecanoic acid (12-pNCA) after incubation at elevated temperatures. In the reaction with 12-pNCA, the new chimeric protein exhibited 88 and 38% of the activity of CYP102A3 and CYP102A1, respectively, but was able to hydroxylate substrates within a wider temperature range compared with the parental enzymes. Maximum activity was obtained at 51°C, and the half-life at 50°C was with 100 min more than ten times longer than that of CYP102A1 (8 min).  相似文献   
5.
Hydroxylations of octane and lauric acid by Cytochrome P450-BM3 (CYP102A1) wild-type and three active site mutants--F87A, L188Q/A74G, and F87V/L188Q/A74G--were rationalized using a combination of substrate orientation from docking, substrate binding statistics from molecular dynamics simulations, and barrier energies for hydrogen atom abstraction from quantum mechanical calculations. Wild-type BM3 typically hydroxylates medium- to long-chain fatty acids on subterminal (omega-1, omega-2, omega-3) but not the terminal (omega) positions. The known carboxylic anchoring site Y51/R47 for lauric acid, and hydrophobic interactions and steric exclusion, mainly by F87, for octane as well as lauric acid, play a role in the binding modes of the substrates. Electrostatic interactions between the protein and the substrate strongly modulate the substrate's regiodependent activation barriers. A combination of the binding statistics and the activation barriers of hydrogen-atom abstraction in the substrates is proposed to determine the product formation. Trends observed in experimental product formation for octane and lauric acid by wild-type BM3 and the three active site mutants were qualitatively explained. It is concluded that the combination of substrate binding statistics and hydrogen-atom abstraction barrier energies is a valuable tool to rationalize substrate binding and product formation and constitutes an important step toward prediction of product ratios.  相似文献   
6.
Isolated P450 monooxygenases have for long been neglected catalysts in enzyme technology. This is surprising as they display a remarkable substrate specificity catalyzing reactions, which represent a challenge for classic organic chemistry. On the other hand, many P450 monooxygenases are membrane bound, depend on rather complicated electron transfer systems and require expensive cofactors such as NAD(P)H. Their activities are low, and stability leaves much to be desired. The use of bacterial P450 monooxygenases from CYP102 family allows overcoming some of these handicaps. They are soluble and their turnovers are high, presumably because their N-terminal heme monooxygenase and their C-terminal diflavin reductase domain are covalently linked. In recent years, protein engineering approaches have been successfully used to turn CYP102 monooxgenases into powerful biocatalysts.  相似文献   
7.
CYP175A1 is a thermostable P450 Monooxygenase from Thermus thermophilus HB27, demonstrating in vivo activity towards beta-carotene. Activity of CYP175A1 was reconstituted in vitro using artificial electron transport proteins. First results were obtained in the mixture with a crude Escherichia coli cell extract at 37 degrees C. In this system, beta-carotene was hydroxylated to beta-cryptoxanthin. The result indicated the presence of electron transport enzymes among the E. coli proteins, which are suitable for CYP175A1. However, upon in vitro reconstitution of CYP175A1 activity with purified recombinant flavodoxin and flavodoxin reductase from E. coli, only very low beta-cryptoxanthin production was observed. Remarkably, with another artificial electron transport system, putidaredoxin and putidaredoxin reductase from Pseudomonas putida, purified CYP175A1 enzyme hydroxylated beta-carotene at 3- and also 3'-positions, resulting in beta-cryptoxanthin and zeaxanthin. Under the optimal reaction conditions, the turnover rate of the enzyme reached 0.23 nmol beta-cryptoxanthin produced per nmol P450 per min.  相似文献   
8.
Cytochrome P450 monooxygenase from the anaerobic microorganism Clostridium acetobutylicum (CYP152A2) has been produced in Escherichia coli. CYP152A2 was shown to bind a broad range of saturated and unsaturated fatty acids and corresponding methyl esters and demonstrated a high peroxygenase activity of up to 200min(-1) with myristic acid. Although a high concentration of hydrogen peroxide of 200microM was necessary for high activities of the enzyme, it led to a fast enzyme inactivation within 2-4min. This might reflect the natural function of CYP152A2 as a rapid hydrogen peroxide scavenging enzyme. In two different reconstituted systems with NADPH, CYP152A2 was able to convert 10 times more substrate, if provided with flavodoxin and flavodoxin reductase from E. coli and even 30-40 times more substrate with the CYP102A1-reductase from Bacillus megaterium. According to the clear preference for hydroxylation at alpha-position, CYP152A2 can be referred to as fatty acid alpha-hydroxylase.  相似文献   
9.
A gene putatively encoding a Δ9 desaturase-like protein was cloned from the isolated marine bacterium Pseudoalteromonas sp. MLY15. The 1134 bp open reading frame, designated as PhFAD9, codes for a 377 amino acid peptide with a molecular weight of 43.4 kDa. The protein was supposed to be a membrane-bound desaturase and its possible topology model was predicted using the Phobius program. The PhFAD9 protein was confirmed to be functional with high Δ9 desaturase activity when expressed in Escherichia coli. The PhFAD9 E. coli transformant accumulated palmitoleic acid, which accounted for 91.7% of the cellular C16 fatty acids after 2 h of induction. The ability for bioconversion of stearic acid to oleic acid was also demonstrated by supplementing the medium with exogenous stearic acid.  相似文献   
10.
Oxygenases-based Escherichia coli whole-cell biocatalyst can be applied for catalysis of various commercially interesting reactions that are difficult to achieve with traditional chemical catalysts. However, substrates and products of interest are often toxic to E. coli, causing a disruption of cell membrane. Therefore, organic solvent-tolerant bacteria became an important tool for heterologous expression of such oxygenases. In this study, the organic solvent-tolerant Bacillus subtilis 3C5N was developed as a whole-cell biocatalyst for epoxidation of a toxic terminal alkene, 1-hexene. Comparing to other hosts tested, high level of tolerance towards 1-hexene and a moderately hydrophobic cell surface of B. subtilis 3C5N were suggested to contribute to its higher 1,2-epoxyhexane production. A systematic optimization of reaction conditions such as biocatalyst and substrate concentration resulted in a 3.3-fold increase in the specific rate. Co-expression of glucose dehydrogenase could partly restored NADPH-regenerating ability of the biocatalyst (up to 38?% of the wild type), resulting in approximately 53?% increase in specific rate representing approximately 22-fold increase in product concentration comparing to that obtained prior to an optimization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号