首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  2021年   2篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2010年   1篇
排序方式: 共有7条查询结果,搜索用时 250 毫秒
1
1.
Ahmed  Raja Ben  Urbisz  Anna Z.  Świątek  Piotr 《Protoplasma》2021,258(1):191-207

This study reveals the ovary micromorphology and the course of oogenesis in the leech Batracobdella algira (Glossiphoniidae). Using light, fluorescence, and electron microscopies, the paired ovaries were analyzed. At the beginning of the breeding season, the ovaries were small, but as oogenesis progressed, they increased in size significantly, broadened, and elongated. A single convoluted ovary cord was located inside each ovary. The ovary cord was composed of numerous germ cells gathered into syncytial groups, which are called germ-line cysts. During oogenesis, the clustering germ cells differentiated into two functional categories, i.e., nurse cells and oocytes, and therefore, this oogenesis was recognized as being meroistic. As a rule, each clustering germ cell had one connection in the form of a broad cytoplasmic channel (intercellular bridge) that connected it to the cytophore. There was a synchrony in the development of the clustering germ cells in the whole ovary cord. In the immature leeches, the ovary cords contained undifferentiated germ cells exclusively, from which, previtellogenic oocytes and nurse cells differentiated as the breeding season progressed. Only the oocytes grew considerably, gathered nutritive material, and protruded at the ovary cord surface. The vitellogenic oocytes subsequently detached from the cord and filled tightly the ovary sac, while the nurse cells and the cytophore degenerated. Ripe eggs were finally deposited into the cocoons. A comparison of the ovary structure and oogenesis revealed that almost all of the features that are described in the studied species were similar to those that are known from other representatives of Glossiphoniidae, which indicates their evolutionary conservatism within this family.

  相似文献   
2.
The aim of the present study is to describe the organization of the ovary and mode of oogenesis at the ultrastructural level in two representatives of Lumbriculida – Lumbriculus variegatus and Stylodrilus heringianus. In both species studied, the ovaries are small and conically shaped structures that are attached to the intersegmental septum via a thin ligament. The ovaries are composed of germline cysts formed by germ cells interconnected by stable cytoplasmic bridges. As a rule, the cyst center is occupied by a poorly developed anuclear cytoplasmic mass, termed a cytophore, whereas the germ cells are located at the periphery of the cyst. Germline cysts are enveloped by somatic cells. The ovaries of the species studied are polarized, i.e., along the long axis of the ovary there is an evident gradient of germ cell development. The data obtained suggest ovary meroism, i.e., two categories of germ cells were found: oocytes, which continue meiosis, gather nutrients, grow and protrude into the body cavity, and nurse cells, which do not grow and are supposed to supply oocytes with cell organelles and macromolecules via the cytophore. The ovary structure and mode of oogenesis in the species studied were compared with those of other clitellate annelids. As a rule, in all clitellates studied to date, the ovaries are composed of germline cysts equipped with a cytophore and associated with somatic cells; however, the ovary morphology differs between taxa regarding several quantitative and qualitative features. The ovary organization and mode of oogenesis in L. variegatus and S. heringianus strongly resemble those found in Tubificinae and Branchiobdellida studied to date. Our results also support a sister-group relationship between Lumbriculida and a clade comprising ectoparasitic clitellates (i.e., Branchiobdellida, Acanthobdellida and Hirudinida) with Branchiobdellida as a plesiomorphic sister group to Acanthobdellida and Hirudinida.  相似文献   
3.
Recent studies on the ovary organization and oogenesis in Tubificinae have revealed that their ovaries are small polarized structures that are composed of germ cells in subsequent stages of oogenesis that are associated with somatic cells. In syncytial cysts, as a rule, each germ cell is connected to the central cytoplasmic mass, the cytophore, via only one stable intercellular bridge (ring canal). In this paper we present detailed data about the composition of germ-line cysts in Tubifex tubifex with special emphasis on the occurrence and distribution of the cytoskeletal elements. Using fixed material and live cell imaging techniques, we found that the entire ovary of T. tubifex is composed of only one, huge multicellular germ-line cyst, which may contain up to 2,600 cells. Its architecture is broadly similar to the cysts that are found in other clitellate annelids, i.e. a common, anuclear cytoplasmic mass in the center of the cyst and germ cells that are connected to it via intercellular bridges. The cytophore in the T. tubifex cyst extends along the long axis of the ovary in the form of elongated and branched cytoplasmic strands. Rhodamine-coupled phalloidin staining revealed that the prominent strands of actin filaments occur inside the cytophore. Similar to the cytophore, F-actin strands are branched and they are especially well developed in the middle and outermost parts of the ovary. Microfilaments are also present in the ring canals that connect the germ cells with the cytophore in the narrow end of the ovary. Using TubulinTracker, we found that the microtubules form a prominent network of loosely and evenly distributed tubules inside the cytophore as well as in every germ cell. The well-developed cytoskeletal elements in T. tubifex ovary seem to ensure the integrity of such a huge germ-line cyst of complex (germ cells - ring canals - cytophore) organization. A comparison between the cysts that are described here and other well-known female germ-line cysts is also made.  相似文献   
4.
Ovaries of Haplotaxis sp. were studied in active and nonactive states, that is, in a sexually mature specimen and in specimens outside of the reproductive period. Two pairs of ovaries were found in segments XI and XII. Especially in the nonactive state, they were in close contact with copulatory glands. Each ovary was composed of germ cells interconnected with syncytial cysts, which were enveloped by a layer of somatic cells. Within cysts each germ cell had one ring canal connecting it to the common anuclear cytoplasmic mass called a cytophore. During oogenesis clustering germ cells differentiated into nurse cells and oocytes; thus, the oogenesis was recognized as meroistic. Vitellogenic oocytes were detached from the ovaries and continued yolk absorption within the body cavity. Because recent studies have shown the variety of ovaries and germ line cyst organization in clitellates and suggest their evolutionary conservatism at the family or subfamily level, the data presented here can be valid in understanding the phylogenetic relationships among Clitellata. In this context, ovaries found in Haplotaxis sp. resembled those of the “Tubifex” type. “Tubifex” ovaries are characteristic for numerous microdrile taxa (tubificines, limnodriloidines, propappids, lumbriculids, and leech‐like branchiobdellids) and can be regarded as the primary character for these Clitellata in which germ‐line cysts are formed during early oogenesis. As the family Haplotaxidae is currently considered to be paraphyletic and the species studied here belongs to Haplotaxidae sensu stricto, our results support the close relationship of Haplotaxidae sensu stricto to the clade consisting of Lumbriculidae, Branchiobdellida, and Hirudinida, in which lumbriculids are sister to the latter two.  相似文献   
5.
The organization of the ovaries in representative of the Salifidae (Hirudinida, Erpobdelliformes) was studied at the ultrastructural level for the first time. Like in other leeches, the ovaries of Barbronia weberi are composed of an outer envelope (i.e., an ovisac made up of two coelomic epithelia, muscle cells, and connective tissue) and several internal units, which are broadly similar to the ovary cords found in representatives of the Erpobdellidae. There are usually 6–8 ovary cords that are twisted or cambered with a narrow apical part and a broader, irregularly shaped distal end in each ovisac of B. weberi. Each ovary cord is built from somatic and germ‐line cells and the latter tend to form multicellular cysts that are equipped with a central cytoplasmic core (cytophore). There are two morphologically different subpopulations of germ‐line cells: oocytes and more numerous nurse cells. Growing oocytes form protuberances on the ovary cord surface and eventually detach from the cord and float freely in the ovisac lumen, whereas the other components of germ‐line cysts (i.e., nurse cells and cytophore) degenerate. It should be pointed out that there is a prominent gradient of germ‐cell development along the long axis of the cord. The somatic cells form the ovary cord envelope (the so‐called spongiosa cells) and also penetrate the spaces between germ‐line cells. Both kinds of the somatic cells, that is, those forming the cord envelope and the somatic cells that are associated with oocytes (follicular cells) have a well‐developed system of intercellular channels. Additionally, one prominent somatic cell, the apical cell, was found at the apical tip of each ovary cord. Because the aforementioned features of ovary cords found in B. weberi are very similar (with a few minor exceptions) to the ovary cords that have been described in Erpobdella octoculata and E. johanssoni, we propose the term “ovary cords of the Erpobdella type” for them. Our results support a close phylogenetic relationship between Salifidae and Erpobdellidae. J. Morphol. 275:479–488, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   
6.
An epistemological–evolutionary conception of leeches (Hirudinida) based on features of the female reproductive system in combination with other morphological characters is presented in the spirit of the cladistic school of taxonomy. Characters relating to the structure of the ovary and the course of oogenesis in leeches were interpreted in this manner, for the first time. Each study was conducted on type species of higher taxonomic groups of true leeches. Results of analyses using features of the reproductive system only as well as in combination with other morphological characters show Piscicolidae and Glossiphoniidae as sister clades making Rhynchobdellida a monophyletic group. Also, Hirudiniformes and Erpobdelliformes appeared to be sister clades within Arhynchobdellida. The relationship between the outgroup specimens and leeches remained unresolved, because both Acanthobdella peledina and branchiobdellidans appeared to be in an equivocal relationship to hirudinidans. Characters concerning the structure of the female reproductive system and course of oogenesis thus appeared to be useful, although conservative, for reconstruction of leech phylogeny, and they well reflect phylogenetic relationships of Hirudinida at the family level.  相似文献   
7.
The ultrastructure of the ovaries and oogenesis was studied in three species of three genera of Tubificinae. The paired ovaries are small, conically shaped structures, connected to the intersegmental septum between segments X and XI by their narrow end. The ovaries are composed of syncytial cysts of germ cells interconnected by stable cytoplasmic bridges (ring canals) and surrounded by follicular cells. The architecture of the germ-line cysts is exactly the same as in all clitellate annelids studied to date, i.e. each cell in a cyst has only one ring canal connecting it to the central, anuclear cytoplasmic mass, the cytophore. The ovaries found in all of the species studied seem to be meroistic, i.e. the ultimate fate of germ cells within a cyst is different, and the majority of cells withdraw from meiosis and become nurse cells; the rest continue meiosis, gather macromolecules, cell organelles and storage material, and become oocytes. The ovaries are polarized; their narrow end contains mitotically dividing oogonia and germ cells entering the meiosis prophase; whereas within the middle and basal parts, nurse cells, a prominent cytophore and growing oocytes occur. During late previtellogenesis/early vitellogenesis, the oocytes detach from the cytophore and float in the coelom; they are usually enveloped by the peritoneal epithelium and associated with blood vessels. Generally, the organization of ovaries in all of the Tubificinae species studied resembles the polarized ovary cords found within the ovisacs of some Euhirudinea. The organization of ovaries and the course of oogenesis between the genera studied and other clitellate annelids are compared. Finally, it is suggested that germ-line cysts formation and the meroistic mode of oogenesis may be a primary character for all Clitellata.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号