首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   25篇
  2021年   3篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   9篇
  2014年   9篇
  2013年   7篇
  2012年   6篇
  2011年   6篇
  2010年   7篇
  2009年   10篇
  2008年   9篇
  2007年   8篇
  2006年   9篇
  2005年   9篇
  2004年   8篇
  2003年   10篇
  2002年   3篇
  2001年   6篇
  2000年   6篇
  1999年   7篇
  1998年   8篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1976年   4篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1968年   4篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
  1958年   1篇
排序方式: 共有197条查询结果,搜索用时 375 毫秒
1.
2.
We have examined the phylogenetic distribution of two t-specific markers among representatives of various taxa belonging to the genus Mus. The centromeric TCP-1a marker (a testicular protein variant specific for all t-haplotypes so far studied) has also been apparently detected in several non-t representatives of the Mus IVA, Mus IVB, and probably M. cervicolor species. By contrast, a t-specific restriction- fragment-length polymorphism allele (RFLP) of the telomeric alpha- globin pseudogene DNA marker alpha-psi-4 was found only in animals belonging to the M. musculus-complex species either bearing genuine t- haplotypes or, like the M. m. bactrianus specimen studied here, likely to do so. This t-specific alpha-psi-4 RFLP allele was found to be as divergent from the RFLP alleles of the latter, non-t, taxonomical groups as it is from Mus 4A, Mus 4B, or M. spretus ones. These results suggest the presence of t-haplotypes and of t-specific markers in populations other than those belonging to the M. m. domesticus and M. m. musculus subspecies, implying a possible origin for t-haplotypes prior to the radiation of the most recent offshoot of the Mus genus (i.e., the spretus/domesticus divergence), some 1-3 Myr ago.   相似文献   
3.
The electrophysiological membrane parameters of the unicellular green alga Eremosphaera viridis were determined using an improved computer-supported single-microelectrode technique. These cells developed an average membrane potential of-150 mV in the light and a specific resistance of 1 Ω m2 with an external potassium concentration of 1.1 mM and pH 5.5. In the dark, many cells showed a less polarized potential of 30–40 mV and a smaller membrane resistance. At potassium concentrations in the external medium higher than 1 mM, the membrane potential strongly depends on the external potassium content apart from a small electrogenic component. At concentrations lower than 1 mM K+, a dependence of the membrane potential upon external potassium concentrations could not be verified. Inserting the internal ion activities in the Goldmann equation shows that, in this range, the proton conductance seems to be predominant over the potassium conductance. Transient changes in the membrane potential and in the membrane resistance were observed after switching off the light, after addition of 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea or N,N′-dicyclohexylcarbodiimide, after a sudden decrease in temperature, and after current pulses. These changes resemble the action potentials (AP) found in other plant cells (Chara, Acetabularia). On average, the AP has a delay period of 5.1 s and a duration of 43.8 s showing a sudden decrease and a slower regeneration. The voltage peak during an AP followed exactly the Nernst potential of potassium over a range of external potassium concentrations from 5 μM to 0.2 M. This is true for depolarization or hyperpolarization, depending on the external K+-concentration. Tetraethylammonium-hydrogensulphate, a rather specific inhibitor of K+ channels in nervous cells, suppressed the AP. The correlation of the appearance of the AP with a short-term opening of potassium channels in the membrane of Eremosphaera is discussed.  相似文献   
4.
5.
Motile extracts have been prepared from Dictyostelium discoideum by homogenization and differential centrifugation at 4 degrees C in a stabilization solution (60). These extracts gelled on warming to 25 degrees Celsius and contracted in response to micromolar Ca++ or a pH in excess of 7.0. Optimal gelation occurred in a solution containing 2.5 mM ethylene glycol-bis (β-aminoethyl ether)N,N,N',N'-tetraacetate (EGTA), 2.5 mM piperazine-N-N'-bis [2-ethane sulfonic acid] (PIPES), 1 mM MgC1(2), 1 mM ATP, and 20 mM KCI at ph 7.0 (relaxation solution), while micromolar levels of Ca++ inhibited gelation. Conditions that solated the gel elicited contraction of extracts containing myosin. This was true regardless of whether chemical (micromolar Ca++, pH >7.0, cytochalasin B, elevated concentrations of KCI, MgC1(2), and sucrose) or physical (pressure, mechanical stress, and cold) means were used to induce solation. Myosin was definitely required for contraction. During Ca++-or pH-elicited contraction: (a) actin, myosin, and a 95,000-dalton polypeptide were concentrated in the contracted extract; (b) the gelation activity was recovered in the material sqeezed out the contracting extract;(c) electron microscopy demonstrated that the number of free, recognizable F-actin filaments increased; (d) the actomyosin MgATPase activity was stimulated by 4- to 10-fold. In the absense of myosin the Dictyostelium extract did not contract, while gelation proceeded normally. During solation of the gel in the absense of myosin: (a) electron microscopy demonstrated that the number of free, recognizable F- actin filaments increased; (b) solation-dependent contraction of the extract and the Ca++-stimulated MgATPase activity were reconstituted by adding puried Dictyostelium myosin. Actin purified from the Dictyostelium extract did not gel (at 2 mg/ml), while low concentrations of actin (0.7-2 mg/ml) that contained several contaminating components underwent rapid Ca++ regulated gelation. These results indicated : (a) gelation in Dictyostelium extracts involves a specific Ca++-sensitive interaction between actin and several other components; (b) myosin is an absolute requirement for contraction of the extract; (c) actin-myosin interactions capable of producing force for movement are prevented in the gel, while solation of the gel by either physical or chemical means results in the release of F-actin capable of interaction with myosin and subsequent contraction. The effectiveness of physical agents in producting contraction suggests that the regulation of contraction by the gel is structural in nature.  相似文献   
6.
The effects of disalicylidenepropanediamine (DSPD) and disulfo-disalicylidenepropanediamine (sulfo-DSPD) on the photosynthetic electron transport of isolated chloroplasts have been reexamined.  相似文献   
7.
The observation that increased muscular activity leads to muscle hypertrophy is well known, but identification of the biochemical and physiological mechanisms by which this occurs remains an important problem. Experiments have been described (5, 6) which suggest that creatine, an end product of contraction, is involved in the control of contractile protein synthesis in differentiating skeletal muscle cells and may be the chemical signal coupling increased muscular activity and the increased muscular mass. During contraction, the creatine concentration in muscle transiently increases as creatine phosphate is hydrolyzed to regenerate ATP. In isometric contraction in skeletal muscle for example, Edwards and colleagues (3) have found that nearly all of the creatine phosphate is hydrolyzed. In this case, the creatine concentration is increased about twofold, and it is this transient change in creatine concentration which is postulated to lead to increased contractile protein synthesis. If creatine is found in several intracellular compartments, as suggested by Lee and Vissher (7), local changes in concentration may be greater then twofold. A specific effect on contractile protein synthesis seems reasonable in light of the work of Rabinowitz (13) and of Page et al. (11), among others, showing disproportionate accumulation of myofibrillar and mitochondrial proteins in response to work-induced hypertrophy and thyroxin-stimulated growth. Previous experiments (5, 6) have shown that skeletal muscles cells which have differentiated in vitro or in vivo synthesize myosin heavy-chain and actin, the major myofibrillar polypeptides, faster when supplied creatine in vitro. The stimulation is specific for contractile protein synthesis since neither the rate of myosin turnover nor the rates of synthesis of noncontractile protein and DNA are affected by creatine. The experiments reported in this communication were undertaken to test whether creatine selectively stimulates contractile protein synthesis in heart as it does in skeletal muscle.  相似文献   
8.
A secretin analogue in which the normal amino acid sequence had been elongated by a (Des-Tyr-betaAla)-residue was studied as tracer for secretin radioimmunoassay. 125I-(DATA)-secretin exhibited superior immunoreactivity with several rabbit anti-secretin sera compared to 125I-6-Tyr-secretin and also to secretin iodinated at its N-terminal histidyl residue. This may be due, at least in part, to higher conformational integrity of the secretin moiety in the 125I-(DATA)-secretin molecule. Thus, at present, 125I-(DATA)-secretin appears to be most suitable as tracer for sensitive secretin radioimmunoassay.  相似文献   
9.
Plasmodium falciparum is responsible for severe malaria which is one of the most prevalent and deadly infectious diseases in the world. The antimalarial therapeutic arsenal is hampered by the onset of resistance to all known pharmacological classes of compounds, so new drugs with novel mechanisms of action are critically needed. Albitiazolium is a clinical antimalarial candidate from a series of choline analogs designed to inhibit plasmodial phospholipid metabolism. Here we developed an original chemical proteomic approach to identify parasite proteins targeted by albitiazolium during their native interaction in living parasites. We designed a bifunctional albitiazolium-derived compound (photoactivable and clickable) to covalently crosslink drug–interacting parasite proteins in situ followed by their isolation via click chemistry reactions. Mass spectrometry analysis of drug–interacting proteins and subsequent clustering on gene ontology terms revealed parasite proteins involved in lipid metabolic activities and, interestingly, also in lipid binding, transport, and vesicular transport functions. In accordance with this, the albitiazolium-derivative was localized in the endoplasmic reticulum and trans-Golgi network of P. falciparum. Importantly, during competitive assays with albitiazolium, the binding of choline/ethanolamine phosphotransferase (the enzyme involved in the last step of phosphatidylcholine synthesis) was substantially displaced, thus confirming the efficiency of this strategy for searching albitiazolium targets.  相似文献   
10.
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or in vitro models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects. To address this hurdle, there have been ongoing advances in differentiation and maturation protocols to improve the quality and use of iPSC-differentiated lineages. Among these are in vitro hepatic and cardiac cellular microsystems that can further enhance the physiology of cultured cells, can be used to better predict drug adverse effects, and investigate drug metabolism, pharmacokinetics, and pharmacodynamics to facilitate successful drug development. In this article, we discuss how cellular microsystems can establish microenvironments for these applications and propose how they could be used for potentially controlling the differentiation of hepatocytes or cardiomyocytes. The physiological relevance of cells is enhanced in cellular microsystems by simulating properties of tissue microenvironments, such as structural dimensionality, media flow, microfluidic control of media composition, and co-cultures with interacting cell types. Recent studies demonstrated that these properties also affect iPSC differentiations and we further elaborate on how they could control differentiation efficiency in microengineered devices. In summary, we describe recent advances in the field of cellular microsystems that can control the differentiation and maturation of hepatocytes and cardiomyocytes for drug evaluation. We also propose how future research with iPSCs within engineered microenvironments could enable their differentiation for scalable evaluations of drug effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号