首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   381篇
  免费   47篇
  国内免费   1篇
  2022年   1篇
  2021年   10篇
  2020年   7篇
  2019年   9篇
  2018年   20篇
  2017年   12篇
  2016年   19篇
  2015年   29篇
  2014年   32篇
  2013年   34篇
  2012年   20篇
  2011年   19篇
  2010年   18篇
  2009年   15篇
  2008年   18篇
  2007年   13篇
  2006年   13篇
  2005年   7篇
  2004年   13篇
  2003年   12篇
  2002年   13篇
  2001年   12篇
  2000年   16篇
  1999年   3篇
  1998年   7篇
  1997年   2篇
  1996年   9篇
  1995年   6篇
  1994年   4篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1983年   1篇
  1982年   3篇
  1981年   4篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1973年   3篇
  1972年   2篇
  1970年   2篇
  1969年   1篇
排序方式: 共有429条查询结果,搜索用时 0 毫秒
1.
2.
Direct evidence is presented for a proline cycle using a cell-free experimental system which sequentially transfers 3H from [1-3H]glucose to NADP+ to Δ1-pyrroline-5-carboxylate and yields [3H]proline. The formation of [3H]proline depends on the presence of NADP, Δ1-pyrroline-5-carboxylate, and the enzymes glucose-6-phosphate dehydrogenase and Δ1-pyrroline-5-carboxylate reductase. The production of [3H]proline from unlabeled proline in the presence of mitochondria provides direct evidence for one complete turn of a proline cycle which transfers reducing equivalents produced by glucose oxidation in the pentose pathway into mitochondria. In this cycle, proline is oxidized to Δ1-pyrroline-5-carboxylate by mitochondrial proline oxidase. Δ1-pyrroline-5-carboxylate is released from mitochondria and is recycled back to proline by Δ1-pyrroline-5-carboxylate reductase with concomitant oxidation of NADPH. At the maximal rate observed, 60% of Δ1-pyrroline-5-carboxylate produced is recycled back to proline. This cycle provides a mechanism for transferring reducing equivalents from NADPH into mitochondria and is linked to glucose oxidation in the pentose pathway by NADPH turnover.  相似文献   
3.
L-pyrroline-5-carboxylic acid, an intermediate in the interconversions of glutamic acid, ornithine and proline, is a potent stimulator of the hexose-monophosphate pentose pathway in cultured human fibroblasts. These studies suggest that pyrroline-5-carboxylate reductase, which catalyzes the conversion of pyrroline-5-carboxylate to proline coupled with the oxidation of NADPH, provides the NADP for the observed activation of the hexose-monophosphate pentose pathway.  相似文献   
4.
5.
Recent studies have shown that pyrroline 5-carboxylate, the intermediate in the interconversions of proline, ornithine, and glutamate, can regulate the metabolism of erythrocytes. We now report that the formation of 5-phosphoribosyl 1-pyrophosphate (PP-Rib-P) was markedly stimulated by pyrroline 5-carboxylate in intact red cells. The production of PP-Rib-P is an important point of regulation in nucleotide metabolism. We found that pyrroline 5-carboxylate increased glucose metabolism through the oxidative arm of the pentose shunt, ribose 5-phosphate formation, and PP-Rib-P production and subsequently augmented purine nucleotide production through the salvage pathway in erythrocytes. We now report that pyrroline 5-carboxylate markedly stimulated the net synthesis of inosine monophosphate from hypoxanthine in intact human red cells so that the pool of inosine monophosphate became 20-30% of the total pool of purine nucleotides. Inosine monophosphate has been considered to be a "mobile pool" of purines, i.e. a reservoir from which peripheral tissues can be supplied; the effect of pyrroline 5-carboxylate on the inosine monophosphate pool may be a mechanism for regulating the function of erythrocytes in purine delivery.  相似文献   
6.
7.
Recent years have seen the convergence of both genetic and biochemical approaches in the study of protein translocation inE. coli. The powerful combination of these approaches is exemplified in the use of anin vitro protein synthesis-protein translocaltion system to analyze the role of genetically defined components of the protein translocation machinery. We describe in this review recent results focusing on the function of thesecA, secB, andsecY gene products and the demonstration of their requirement forin vitro protein translocation. The SecA protein was recently shown to possess ATPase activity and was proposed to be a component of the translocation ATPase. We present a speculative working model whereby the translocator complex is composed of the integral membrane proteins SecY, SecD, SecE, and SecF, forming an aqueous channel in the cytoplasmic membrane, and the tightly associated peripheral membrane protein SecA functioning as the catalytic subunit of the translocator or protein-ATPase.  相似文献   
8.
The interconversions of proline and 1-pyrroline-5-carboxylate form an intercellular cycle that is the basis of a metabolic interaction between hepatocytes and erythrocytes. The cycle transfers oxidizing potential from hepatocytes to erythrocytes, which stimulates pentose phosphate pathway in erythrocytes. This interaction depends on the differential metabolism of proline and 1-pyrroline-5-carboxylate in erythrocytes and hepatocytes and consists of the following: in hepatocytes proline oxidase converts proline into 1-pyrroline-5-carboxylate, which is released into the medium and taken up by erythrocytes; erythrocyte 1-pyrroline-5-carboxylate reductase converts 1-pyrroline-5-carboxylate into proline and concomitantly generates NADP+; the generated oxidizing potential drives glucose metabolism through the pentose phosphate pathway in erythrocytes; finally, erythrocytes release proline into the medium, enabling it to re-enter hepatocytes and repeat the cycle. The increased activity of the pentose phosphate pathway in erythrocytes may enhance the production of 5-phosphoribosyl pyrophosphate, a necessary moiety for the processing of purines.  相似文献   
9.
The reactions catalyzed by proline oxidase and pyrroline-5-carboxylate reductase form a catalytic cycle linking the hexose-monophosphate pentose (HMP) pathway to mitochondrial ATP generation. The cycling of proline and pyrroline-5-carboxylate couples glucose oxidation to ATP generation by a mechanism independent of the Embden-Meyerhof pathway and the tricarboxylic acid cycle.  相似文献   
10.
Gastrodia elata, a fully mycoheterotrophic orchid without photosynthetic ability, only grows symbiotically with the fungus Armillaria. The mechanism of carbon distribution in this mycoheterotrophy is unknown. We detected high sucrose concentrations in all stages of Gastrodia tubers, suggesting sucrose may be the major sugar transported between fungus and orchid. Thick symplasm‐isolated wall interfaces in colonized and adjacent large cells implied involvement of sucrose importers. Two sucrose transporter (SUT)‐like genes, GeSUT4 and GeSUT3, were identified that were highly expressed in young Armillaria‐colonized tubers. Yeast complementation and isotope tracer experiments confirmed that GeSUT4 functioned as a high‐affinity sucrose‐specific proton‐dependent importer. Plasma‐membrane/tonoplast localization of GeSUT4‐GFP fusions and high RNA expression of GeSUT4 in symbiotic and large cells indicated that GeSUT4 likely functions in active sucrose transport for intercellular allocation and intracellular homeostasis. Transgenic Arabidopsis overexpressing GeSUT4 had larger leaves but were sensitive to excess sucrose and roots were colonized with fewer mutualistic Bacillus, supporting the role of GeSUT4 in regulating sugar allocation. This is not only the first documented carbon import system in a mycoheterotrophic interaction but also highlights the evolutionary importance of sucrose transporters for regulation of carbon flow in all types of plant‐microbe interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号