首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   23篇
  国内免费   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   11篇
  2012年   8篇
  2011年   7篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   6篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   7篇
  1990年   2篇
  1989年   6篇
  1988年   3篇
  1987年   2篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   7篇
  1982年   4篇
  1981年   2篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
  1975年   4篇
  1974年   3篇
  1973年   1篇
  1972年   2篇
  1971年   4篇
  1957年   1篇
排序方式: 共有165条查询结果,搜索用时 312 毫秒
1.
A commercially available ion-selective electrode for nitrate was used to continuously monitor tetrathionate oxidation by Thiobacillus dentrificans. The electrode was much more sensitive to tetrathionate than to nitrate. The same electrode could also be used for the determination of trithionate.  相似文献   
2.
3.
A mass balance was developed for the degradation of 2,4-dichlorophenoxyacetic acid by a mixed culture. Batch culture experiments showed the degradation to be an acid-producing step. Inorganic chloride concentration consistently correlated with the expected value and with base consumption to maintain a constant pH.  相似文献   
4.
Thiobacillus ferrooxidans was used in fixed-film bioreactors to oxidize ferrous sulfate to ferric sulfate. Glass beads, ion-exchange resin, and activated-carbon particles were tested as support matrix materials. Activated carbon was tested in both a packed-bed bioreactor and a fluidized-bed bioreactor; the other matrix materials were used in packed-bed reactors. Activated carbon displayed the most suitable characteristics for use as a support matrix of T. ferrooxidans fixed-film formation. The reactors were operated within a pH range of 1.35 to 1.5, which effectively reduced the amount of ferric iron precipitation and eliminated diffusion control of mass transfer due to precipitation. The activated-carbon packed-bed reactor displayed the most favorable biomass holdup and kinetic performance related to ferrous sulfate oxidation. The fastest kinetic performance achieved with the activated-carbon packed-bed bioreactor was 78 g of Fe oxidized per liter per h (1,400 mmol of Fe oxidized per liter per h) at a true dilution rate of 40/h, which represents a hydraulic retention time of 1.5 min.  相似文献   
5.
The simultaneous degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-(2-methyl-4-chlorophenoxy)propionic acid (mecoprop) was achieved by two mixed cultures in the absence of any additional carbon or energy substrates. Mecoprop was not completely degraded by either of the two cultures, nor did addition of 2,4-D affect the degradation of mecoprop. The cultures completely degraded 2,4-D, and the degradation was uninfluenced by the addition of mecoprop. Nearly complete dechlorination of the mixture of two herbicides was achieved by both cultures, on the basis of the total amount of the two herbicides degraded. During the course of the reaction, however, the expected values of chloride were not met. Cell growth continued after the degradation of the parent substrates ceased. Although the mecoprop degradation did not continue to completion, spectral and growth data indicated that the metabolites which had accumulated during the reaction were degraded upon further incubation.  相似文献   
6.
Summary Uranyl sulphate (0.2–0.9 mM) inhibited ferrous iron oxidation by growing cultures ofThiobacillus ferrooxidans. The addition of 5–100 mM uranium to the cultures caused immediate cessation of carbon dioxide fixation, rapid loss of viability and gradual depression of ferrous iron oxidation. Virtually no uranium was found in washed cells grown in the presence of subtoxic to toxic amounts of uranyl sulphate. Uranium-poisoned organisms appeared plasmolyzed in electron micrographs. Cultures tolerant to 5 mM UO2 2+ were develoepd by successive subculturing in increased uranium concentrations. The tolerance was maintained during subculturing in uranium-free medium. Frequency of mutants resistant to 1.0 and 1.5 mM UO2 2+ was 1 per 1.3×106 and 1 per 9.0×108, respectively. The frequency was increased in the presence of 15–150 mM nickel, zinc and manganese. In liquid cultures, bivalent cations and EDTA alleviated the toxicity of 2 mM uranyl sulphate.  相似文献   
7.
The purpose of the present study was to assess atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) mineralization by indigenous microbial communities and to investigate constraints associated with atrazine biodegradation in environmental samples collected from surface soil and subsurface zones at an agricultural site in Ohio. Atrazine mineralization in soil and sediment samples was monitored as 14CO2 evolution in biometers which were amended with 14C-labeled atrazine. Variables of interest were the position of the label ([U-14C-ring]-atrazine and [2-14C-ethyl]-atrazine), incubation temperature (25°C and 10°C), inoculation with a previously characterized atrazine-mineralizing bacterial isolate (M91-3), and the effect of sterilization prior to inoculation. In uninoculated biometers, mineralization rate constants declined with increasing sample depth. First-order mineralization rate constants were somewhat lower for [2-14C-ethyl]-atrazine when compared to those of [U-14C-ring]-atrazine. Moreover, the total amount of 14CO2 released was less with [2-14C-ethyl]-atrazine. Mineralization at 10°C was slow and linear. In inoculated biometers, less 14CO2 was released in [2-14C-ethyl]-atrazine experiments as compared with [U-14C-ring]-atrazine probably as a result of assimilatory incorporation of 14C into biomass. The mineralization rate constants (k) and overall extents of mineralization (P max ) were higher in biometers that were not sterilized prior to inoculation, suggesting that the native microbial populations in the sediments were contributing to the overall release of 14CO2 from [U-14C-ring]-atrazine and [2-14C-ethyl]-atrazine. A positive correlation between k and aqueous phase atrazine concentrations (C eq ) in the biometers was observed at 25°C, suggesting that sorption of atrazine influenced mineralization rates. The sorption effect on atrazine mineralization was greatly diminished at 10°C. It was concluded that sorption can limit biodegradation rates of weakly-sorbing solutes at high solid-to-solution ratios and at ambient surface temperatures if an active degrading population is present. Under vadose zone and subsurface aquifer conditions, however, low temperatures and the lack of degrading organisms are likely to be primary factors limiting the biodegradation of atrazine.Abbreviations C eq solution phase atrazine concentration at equilibrium - C s amount of atrazine sorbed - CLA [2-14C-ethyl]-atrazine - k first-order mineralization rate constant - K d sorption coefficient - m slope - P max maximum amount of CO2 released - RLA [U-14C-ring]-atrazine  相似文献   
8.
The purpose of the work was to quantitatively characterize temperature effects on the bacterial leaching of sulfide ore material containing several sulfide minerals. The leaching was tested at eight different temperatures in the range of 4 to 37°C. The experimental technique was based on column leaching of a coarsely ground (particle diameter, 0.59 to 5 mm) ore sample. The experimental data were used for kinetic analysis of chalcopyrite, sphalerite, and pyrrhotite oxidation. Chalcopyrite yielded the highest (73 kJ/mol) and pyrrhotite yielded the lowest (25 kJ/mol) activation energies. Especially with pyrrhotite, diffusion contributed to rate limitation. Arrhenius plots were also linear for the reciprocals of lag periods and for increases of redox potentials (dmV/dt). Mass balance analysis based on total S in leach residue was in agreement with the highest rate of leaching at 37 and 28°C. The presence of elemental S in leach residues was attributed to pyrrhotite oxidation.  相似文献   
9.
Solid-Phase Products of Bacterial Oxidation of Arsenical Pyrite   总被引:1,自引:1,他引:0       下载免费PDF全文
Bacterial leaching of an As-containing pyrite concentrate produced acidic (pH < 1) leachates. During the leaching, the bacteria solubilized both As and Fe, and these two elements were distributed in solution-phase and solid-phase products. Jarosite and scorodite were the exclusive crystalline products in precipitate samples from the bacterial leaching of the sulfide concentrate.  相似文献   
10.
Summary Pseudomonas paucimobilis was isolated from a consortium which was capable of degrading dicamba (3,6-dichloro-2-methoxybenzoic acid) as the sole source of carbon. The degradation of dicamba byP. paucimobilis and the consortium was examined over a range of substrate concentration, temperature, and pH. In the concentration range of 100–2000 mg dicamba L–1 (0.5–9.0 mM), the degradation was accompanied by a stoichiometric release of 2 mol of Cl per mol of dicamba degraded. The cultures had an optimum pH 6.5–7.0 for dicamba degradation. Growth studies at 10°C, 20°C, and 30°C yielded activation energy values in the range of 19–36 kcal mol–1 and an average Q10 value of 4.0. Compared with the pure cultureP. paucimobilis, the consortium was more active at the lower temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号