首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   6篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   6篇
  2012年   7篇
  2011年   6篇
  2010年   4篇
  2009年   6篇
  2008年   8篇
  2007年   11篇
  2006年   5篇
  2005年   11篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1988年   1篇
  1976年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
1.
2.
3.
Recent studies have shown the gene expression of several transporters to be circadian rhythmic. However, it remains to be elucidated whether the expression of P‐glycoprotein, which is involved in the transport of many medications, undergoes 24 h rhythmicity. To address this issue, we investigated daily profiles of P‐glycoprotein mRNA and protein levels in peripheral mouse tissues. In the liver and intestine, but not in the kidney, Abcb1a mRNA expression showed clear 24 h rhythmicity. On the other hand, Abcb1b and Abcb4, the other P‐glycoprotein genes, did not exhibit significant rhythmic expression in the studied tissues. In the intestine, levels of whole P‐glycoprotein also exhibited a daily rhythm, with a peak occurring in the latter half of the light phase and a trough at the onset of the light phase. Consistent with the day‐night change of P‐glycoprotein level, the ex vivo accumulation of digoxin, an Abcb1a P‐glycoprotein substrate, into the intestinal segments at the onset of dark phase was significantly lower than it was at the onset of the light phase. Thus, Abcb1a P‐glycoprotein expression, and apparently its function, are 24 h rhythmic at least in mouse intestine tissue. This circadian variation might be involved in various chronopharmacological phenomena.  相似文献   
4.
Pseudogenes are considered to be nonfunctional genes that lack a physiological role. By screening 3985 Escherichia coli mutants using chemochromic membranes, we found four pseudogenes involved in hydrogen metabolism. Knockouts of pseudogenes ydfW and ypdJ had a defective hydrogen phenotype on glucose and formate, respectively. Also, the knockout of pseudogene yqiG formed hydrogen from formate but not from glucose. For the yqiG mutant, 100% hydrogen recovery was obtained by the complementation of YqiG via a plasmid. The knockout of pseudogene ylcE showed hydrogen deficiency in minimal media which suggested that the role of YlcE is associated with cell growth. Hence, the products of these four pseudogenes play an important physiological role in hydrogen production in E. coli.  相似文献   
5.
N-Benzoylgiycine amidohydrolase (hippurate hydrolase EC 3.5.1.32), which catalyzes the hydrolysis of hippuric acid to benzoic acid and glycine, was found in a cell-free extract of Pseudomonas putida C692-3 grown on a medium containing hippuric acid. The enzyme was purified from the extract by ammonium sulfate fractionation and column chromatographies on DEAE-cellulose, DEAE-Sephadex A-50, hydroxyapatite, and Sepharose CL-6B. The enzyme was finally crystallized. The crystalline enzyme was almost homogeneous on electrophoresis. The enzyme had a molecular weight of about 170,000 and consisted of four subunits identical in molecular weight (approximately 42,000). The enzyme hydrolyzed N-benzoylglycine most rapidly, and N-benzoyl-l-alanine and N-benzoyl-l-aminobutyric acid. The Km value for these substrates were 0.72 mm, 0.87 mm, and 0.87mm, respectively. The optimum pH of the enzyme reaction was 7.0 to 8.0 and the enzyme was stable from pH 6.0 to 8.0.  相似文献   
6.

Background and Purpose

The major obstacles to treatment of pancreatic cancer are the highly invasive capacity and resistance to chemo- and radiotherapy. Glycogen synthase kinase 3β (GSK3β) regulates multiple cellular pathways and is implicated in various diseases including cancer. Here we investigate a pathological role for GSK3β in the invasive and treatment resistant phenotype of pancreatic cancer.

Methods

Pancreatic cancer cells were examined for GSK3β expression, phosphorylation and activity using Western blotting and in vitro kinase assay. The effects of GSK3β inhibition on cancer cell survival, proliferation, invasive ability and susceptibility to gemcitabine and radiation were examined following treatment with a pharmacological inhibitor or by RNA interference. Effects of GSK3β inhibition on cancer cell xenografts were also examined.

Results

Pancreatic cancer cells showed higher expression and activity of GSK3β than non-neoplastic cells, which were associated with changes in its differential phosphorylation. Inhibition of GSK3β significantly reduced the proliferation and survival of cancer cells, sensitized them to gemcitabine and ionizing radiation, and attenuated their migration and invasion. These effects were associated with decreases in cyclin D1 expression and Rb phosphorylation. Inhibition of GSK3β also altered the subcellular localization of Rac1 and F-actin and the cellular microarchitecture, including lamellipodia. Coincident with these changes were the reduced secretion of matrix metalloproteinase-2 (MMP-2) and decreased phosphorylation of focal adhesion kinase (FAK). The effects of GSK3β inhibition on tumor invasion, susceptibility to gemcitabine, MMP-2 expression and FAK phosphorylation were observed in tumor xenografts.

Conclusion

The targeting of GSK3β represents an effective strategy to overcome the dual challenges of invasiveness and treatment resistance in pancreatic cancer.  相似文献   
7.
To clarify whether sister copies of mini-F plasmid are immediately separated from each other after replication, we analyzed the behavior of sister mini-F copies after synchronized replication of mini-F. Sister copies of mini-F were separated immediately or shortly after replication, in contrast to sister oriC copies of the Escherichia coli chromosome.  相似文献   
8.
We designed a novel type of cationic lipid, lipids with a cationic polar group in the polyamidoamine dendron, because these dendron-bearing lipids are expected to form complexes with plasmid DNA and achieve efficient transfection of cells by synergy of endosome buffering and membrane fusion with the endosome, both of which are useful for the promotion of the transfer of plasmid DNA from endosome to cytosol. Four kinds of lipids with polyamidoamine dendrons of first to fourth generations, DL-G1, DL-G2, DL-G3, and DL-G4, were synthesized. The lipid with a dendron of a higher generation exhibited greater ability to form lipoplexes with plasmid DNA, as estimated by agarose gel electrophoresis. While the DL-G1 lipoplex did not transfect CV1 cells, the lipoplexes containing the DL-G2, DL-G3, or DL-G4 could induce transfection of the cells, and their activity was elevated with increasing generation of the dendron. Addition of dioleoylphosphatidylethanolamine (DOPE), which is known to increase fusion ability of a lipid membrane, into the lipoplexes greatly enhanced their transfection activity. In addition, the comparison with DC-Chol-containing lipoplex, which is widely used as a nonviral vector, showed that the DL-G3-DOPE lipoplex exhibits more efficient transfections. These findings imply that these dendron-bearing lipids may form the basis for a novel family of cationic lipids for efficient gene delivery.  相似文献   
9.

Background  

Molecular hydrogen is an environmentally-clean fuel and the reversible (bi-directional) hydrogenase of the cyanobacterium Synechocystis sp. PCC 6803 as well as the native Escherichia coli hydrogenase 3 hold great promise for hydrogen generation. These enzymes perform the simple reaction 2H+ + 2e- ↔ H2 (g).  相似文献   
10.
The gesneriaceous perennial plant Titanotrichum oldhamii has beautiful foliage and attractive bright yellow flowers. However, breeding of T. oldhamii by conventional sexual hybridization may be difficult because sexual reproduction of this species is very rare. In the present study, plant regeneration systems via both direct and indirect formation of adventitious shoots from leaf explants were established as the first step toward breeding T. oldhamii by using biotechnological techniques. Adventitious shoots were formed efficiently on medium containing 0.1 mg l−1 benzyladenine. Histological observation showed that shoot formation on this medium occurred directly from leaf epidermal cells without callus formation. On the other hand, leaf explants formed calluses on medium containing 0.1 mg l−1 2,4-dichlorophenoxyacetic acid. The calluses could be maintained by monthly subculturing to fresh medium of the same composition. When the calluses were transferred to plant growth regulator-free medium, they formed adventitious shoots. Directly and indirectly formed shoots rooted well on medium containing 0.1 mg l−1 indole-3-butyric acid. Plantlets thus obtained were successfully acclimatized and grew vigorously in the greenhouse. Flow cytometry analysis indicated that no variation in the ploidy level was observed in plants regenerated via direct shoot formation, whereas chromosome doubling occurred in several plants regenerated via indirect shoot formation. Regenerated plants with the same ploidy level as the mother plants showed almost the same phenotype as the mother plants, whereas chromosome-doubled plants showed apparent morphological alterations: they had small and crispate flowers, and round and deep green leaves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号